Home

Enhanced links to genes are provided by Last update: February 25, 2014

If you know of other interactions, (or corrections) please with Pubmed ID, host gene symbol/accession number and viral interacting protein. Thank you and thanks to all who have sent reprints.

Please cite:- Susceptibility genes are enriched in those of the herpes simplex (HSV-1) / host interactome in psychiatric and neurological disorders. Pathogens and disease 2013

NCBI Books (free online edition) Human Herpesviruses Edited by Ann Arvin, Gabriella Campadelli-Fiume, Edward Mocarski, Patrick S. Moore, Bernard Roizman, Richard Whitley, and Koichi Yamanishi.

Alzforum live discussion on Herpes simplex and Alzheimer's disease

Useful Links: VIPR Herpes ViralZone UniProt Herpes at Medline Plus Herpes.com Microbiology and Immunology on Line Chapter on Herpes

KEGG PATHWAY ANALYSIS OF THE VIRAL LIFE CYCLE

MANY OF THE PROTEINS IN THIS NETWORK CAN BE FOUND IN ALZHEIMER'S DISEASE PLAQUES AND TANGLES suggesting that these structures, which also contain immune and complement related proteins, are cemeteries reflecting an immune battle between host and virus Neurochem Int 2010

Many HSV-1 proteins are also homologous to the products of Alzheimer's disease susceptibility genes Int.J.Alz.Dis 2010 See Alzheimer's pathways

Many risk factors implicated in Alzheimer's disease are able to reactivate herpes simplex ISRN Neurology, 2011 The Key genes resulting from genome-wide association studies in Alzheimer's disease can be related to herpes simplex and other pathogens' life cycles and to the immune system Int.J.Alz.Dis 2011

Susceptibility genes are enriched in those of the herpes simplex (HSV-1) / host interactome in psychiatric and neurological disorders. Pathogens and disease 2013

 
Dr Wagner's Animations of steps of HSV Infection and Replication

Videos are from Youtube. Images are from, and linked to, Wikipedia

New interactions needing KEGG mapping ADORA1 BST2 CSTA CALM1 CASP7 CAT CD200R1 CINP CLSPN DCTN2 DST EXOG FLG HIST1H3E IL25 MARCO MB21D1 MED23 PIK3R1 RAB27A SAMHD1 SUZ12 TLR4 TLR7 TOPBP1 TSG101 PNKP PTPRU PPM1M LOC14621 FBF1 RHOT1 ASS1 RPTOR ITGB6 ITGB8 LIMK1 LASP1 SSH1 NEDD4 MLLT4 KDM3A KDM6A PHF10 METTL17 ARID1A BAZ1B JMJD8 ING5 SUDS3 ING1 PDS5B TAF3 NLRC3


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Receptors and carriers

Gamma-secretase (a complex of anterior pharynx defective 1 homolog APH1A, nicastrin NCSTN, the presenilin enhancer PSENEN and presenilins PSEN1 or PSEN2) cleaves a number of viral receptors including PVRL1, SDC1 and SDC2 , as well as APP (substrates reviewed in Lleó and Saura, 2011).

 

Lipoprotein

Integrin

Lipid raft

 

 

 

Coagulation factors

Coagulation factors

Haemoglobins (en.wikipedia.org...)

Haemoglobin

Endocytosis

 

, ITPR2Endocytosis

Retrograde transport to nucleus (Axoplasmic transport Wikipedia)

Dynein motor

Anterograde transport to plasma membrane (Axoplasmic transport Wikipedia)

Actin , myosin (wikipedia) and keratin (wikipedia) related

Myosin

Other transport (mostly intracellular: endosome , golgi , endoplasmic reticulum, lysosome)

Endosome

Golgi

Lysosomes

 

Exocytosis

Exocytosis

 

Intercellular spread (Tight junctions) (Gap Junctions )

  • HSV-1 binds to cell junction components Dingwell and Johnson , 1998
  • DST Dystonin: promotes plus-end directed transport of viral capsids on microtubules during entry McElwee et al, 2013
  • MLLT4 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 4 : knockdown reduces efficiency of HSV-1 spreading accross epithelial adherens junctions Keyser et al, 2008

Cell Junctions

HEAT SHOCK PROTEINS (en.wikipedia.org...) and protein stress: Unfolded protein response (en.wikipedia.org...)

METABOLIC

Free radical Antioxidant

Peroxiredoxin

Ubiquitin proteasome and SUMO

Ubiquitin

 

Proteasome

 

 

Cell cycle

Cell Cycle

Immune and defence

  • AIM2 absent in melanoma 2 : Immune sensor for viral DNA Unterholzner et al, 2010
  • ATG7 autophagy related 7 homolog (S. cerevisiae): The antiviral activity of Pentagalloylglucose is impaired in ATG7 knockout cells Pei et al, 2011
  • BBC3 BCL2 binding component 3 (FLJ42994, JFY-1, JFY1, PUMA): contributes to the death of antigen-specific T cells during shutdown of the immune response to infection Fischer et al, 2008.
  • BECN1 Beclin Autophagy protein: Binds to ICP34.5 [84] binds to tegument protein UL37 Kelly et al, 2011
  • BST2 – bone marrow stromal cell antigen 2 (tetherin): over-expression inhibits HSV-1 release and HSV-1 depletes tetherin from infected cells Zenner et al, 2013.
  • C3 Glycoprotein C binds to complement C3b, iC3b and C3c but not to C3d [85] Complement system
  • C11orf30 (Emsy): The Akt1/EMSY/IFN-stimulated genes pathway is activated by both viral infection and interferon , and inhibits the replication of HSV-1 Ezell et al, 2012
  • CAMP cathelicidin antimicrobial peptide Anyiviral (vs HSV-1) and antibacterial peptide Gordon et al, 2005
  • Chemokines RANTES/CCL5, MIP-lalpha/ CCL3, and MIP-1beta/CCL4 bind to HSV-1 and cut a hole in the HSV-1 envelope Shimomura et al, 2008
  • CCL1 upregulated by infection in corneal epithelial cells Miyazaki et al, 2011
  • CCL2 chemokine (C-C motif) ligand 2 (MCP-1) : MCP-1 from HSV-1-infected keratocytes attracts CD4(+) T cells into the cornea Lee et al, 2008
  • CCL3 chemokine (C-C motif) ligand 3: (MIP-1-alpha, MIP1A, SCYA3 )protects mice from corneal infection Stuart et al, 2008
  • CCL4 chemokine (C-C motif) ligand 4 ( ACT2, AT744.1, G-26, HC21, LAG-1, LAG1, MGC104418, MGC126025, MGC126026, MIP-1-beta, MIP1B, MIP1B1, SCYA2, SCYA4 )CCL3 CCl4 and CCL5 possess antiviral activity via binding to glycoprotein B Nakayama et al, 2006
  • CCL5 chemokine (C-C motif) ligand 5 (RANTES) : mediates leukocyte adhesion and migration in HSV-1 encephalitis Teixeira et al, 2010
  • CCL7 TNF-alpha, IL1B, IL6, IL12, CCL7, CCL8, CCL9, CXCL1, CXCL2, CXCL4, and CXCL5. CXCL9 and CXCL10 are induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • CCL8 induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • CCL9 induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • CCL19 chemokine (C-C motif) ligand 19 (RP11-195F19.11-003, CKb11, ELC, MGC34433, MIP-3b, MIP3B, SCYA19) CCL19 and CCL21 (CCR7 ligands) enhance the protective immune response against the virus Toka et al, 2003.
  • CCL20 chemokine (C-C motif) ligand 20 ( CKb4, LARC, MIP-3a, MIP3A, SCYA20, ST38 ) upregulated by infection in corneal epithelial cells and stromal keratocytes Shirane et al, 2004
  • CCL21 chemokine (C-C motif) ligand 21 : CCL19 and CCL21enhance the protective immune response against the virus (CCR7 ligands) Toka et al, 2003.
  • CCR1, CCR2, CCR5, and CXCR3, (highly expressed on activated T cells, macrophages and most immature dendritic cells), and the more broadly expressed CCR7, were highly expressed and strongly induced in infected cornea and trigeminal ganglia at 3 and 10 days postinfection Cook et al, 2004
  • CCR2 See Cook et al, 2004
  • CCR3 Antibodies to CCR3 block interferon alpha induction by the virus Ankel et al, 1998 CCR3 and CCR6 are induced at sites of infection during acute and latent phases Cook et al, 2004
  • CCR5 chemokine (C-C motif) receptor 5 : attracts cell types that reduce CNS damage but allow viral replication in the brain Teixeira et al, 2010 See Cook et al, 2004
  • CCR6 CCR6 and CCR3 are induced at sites of infection during acute and latent phases Cook et al, 2004
  • CCR7 chemokine (C-C motif) receptor 7 : Downregulated by infection as a mechanism to escape immune attack Prechtel et al, 2005
  • CD1D HMC class I antigen-like glycoprotein CD1D ;Downregulated by infection via interaction with glycoprotein B, preventing recognition by CD1d-restricted natural killer T cells apex
  • Rao et al, 2011
  • CD8A : CD8a molecule (Leu2 T-lymphocyte antigen) Latency is reduced in CD8 knockout mice Mott et al, 2008
  • CD38 downregulated in infected monocytes Cermelli et al, 2008
  • PTPRC – protein tyrosine phosphatase, receptor type, C: (CD45) Plays an essential role in immunity to HSV-1 Caignard et al, 2013
  • CD59 Complement membrane attack complex inhibitor Virion component Loret et al, 2008 and Stegen et al, 2013
  • CD69 downregulated in infected monocytes Cermelli et al, 2008
  • CD74 CD74 molecule, major histocompatibility complex, class II invariant chain: General chaperone regulating antigen presentation for the immune response Dixon et al, 2005
  • CD83 Degraded by HSV-1 infection in dendritic cells Kummer et al, 2007
  • CD Molecules regulated by infection inpou plasmacytoid dendritic cells: Downregulated CD4 CD11A (= ITGAL) CD26 (= DPP4) CD29 (= ITGB1) CD31 (=PECAM1 ) CD36 (CD45 =PTPRC) CD49d (= ITGA4) , CD53 CD62L CD123 (= IL3RA) CD99 CD123 CD183 (= CXCR3 ) CD303 ( = CLEC4C ) CD304 ( = NRP1) CD305 ( = LAIR1 ) : Upregulated CD38 CD40 CD69 CD95 (= FAS) CD274 : The expression of the adhesion and migratory molecule CD43 (= SPN sialophorin ) ; the homing receptor CD197 (= CCR7) the TNF-related apoptosis-inducing ligand (TRAIL = TNFSF10) and the cytotoxicity-activating receptor CD319 (= SLAMF7 ) was altered only after concomitant exposure to IL-3 and HS.
  • Transient up-regulation (with subsequent down-regulation)
    CD36, CD69,TNFSF10 , CD274, SLAMF7 , CD336 ( = NCR2 )
    Up-regulation CD38, CD40, CD54 ( = ICAM1 ), FAS ,CCR7
    Down-regulation CD4, PTPRC , CD47, CD48, CD53, CD62L ( = SELL) ,CD99, IL3RA , CD162 (= SELPLG ), CXCR3 , CD184 = (CXCR4) ,CD195 (= CCR5 ), CLEC4C, LAIR1, PECAM1, CD156b( = ADAM17 ), NRP1 CD2, ITGA4 , CD229 (= LY9 )Schuster et al, 2010
  • CD200R1 CD200 receptor 1: Supports viral replication Soberman et al, 2012
  • CD274 CD274 molecule: programmed cell death 1 ligand 1: Contributes to viral resistance in dendritic cells Bryant-Hudson and Carr, 2012
  • CH25H cholesterol 25-hydroxylase: 25-hydroxycholesterol has antiviral effects against various viruses (influenza, HSV-1, MCMV) Blanc et al, 2013
  • CRP C-reactive protein, pentraxin-related: Generally involved in pathogen defence and inflammatory responses:
  • CXCL1 induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • CXCL2 chemokine (C-X-C motif) ligand 2: Recruits neutrophils to sites of infection Wojtasiak et al, 2010 induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • CXCL3 levels reduced by IL12 induced regression in herpes stromal keratitis Frank et al, 2010.
  • CXCL4 induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • CXCL5 induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • CXCL9 chemokine (C-X-C motif) ligand 9:Corneal T cell infiltration in response to infection is reduced in knockout mice Wuest et al, 2006 induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • CXCL10 chemokine (C-X-C motif) ligand 10 Conveys resistance to infection Wuest et al, 2011 induced by herpes simplex infection in microglial cells Aravalli et al, 2009 See Araki-Sasaki et al, 2006
  • CXCL12 Migration towards CXCL12 reduced in infected dendritic cells Prechtel et al, 2005
  • CXCL13 Gene expressions of chemokines acting on T cells and B cells, (CCL19, CCL21, CXCL9, CXCL13, CXCL10, XCL1, and CXCL16) were up-regulated and peaked at 3 days after infection in the cornea and trigeminal ganglion Araki-Sasaki et al, 2006
  • CXCL16 See Araki-Sasaki et al, 2006
  • CXCR2 chemokine (C-X-C motif) receptor 2 (IL8 receptor) : Increases viral virulence in relation to stromal keratitis Banerjee et al, 2004
  • CXCR3 chemokine (C-X-C motif) receptor 3 (IP10 or MIG receptor) : Modulates the effects of CXCL10 on infection Wuest and Carr, 2008
  • CXCR4 chemokine (C-X-C motif) receptor 4: Downregulated by infection as a mechanism to escape immune attack Prechtel et al, 2005 Antibodies to CCXR4 block interferon alpha induction by the virus Ankel et al, 1998
  • Secreted glycoprotein G binds to human chemokines, including CCL18, CCL22 CCL25, CCL26, CCL28, CXCL9, CXCL10, CXCL11, CXCL12a, CXCL12ß, CXCL13 and CXCL14 Viejo-Borbolla et al, 2012
  • DEFA1 defensin, alpha 1 : Binds to Glycoprotein B [86] (en.wikipedia.org...)
  • DEFA3 defensin, alpha 3, neutrophil-specific: Binds to Glycoprotein B [86]
  • DEFA4 Blocks viral entry via binding to heparan sulphate [86]
  • DEFA5 defensin, alpha 5, Paneth cell-specific: Binds to Glycoprotein B [86]
  • DEFA6 defensin, alpha 6, Paneth cell-specific: Blocks viral entry via binding to heparan sulphate [86]
  • DEFB103A defensin, beta 103A: Binds to Glycoprotein B [86]
  • DEFB103B defensin, beta 103B: Binds to Glycoprotein B [86]
  • DDX58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (Rig-1) recognises viral DNA Kanneganti et al, 2007 Interacts with US11 Xing et al, 2012
  • DDX60 DEAD (Asp-Glu-Ala-Asp) box polypeptide 60: recognises viral DNA acting in a similar way to RIG-1 Miyashita et al, 2011
  • EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2: (pkr) Binds to US11 [87] Pathway (www.biocarta.com...) Biocarter
  • PRKRA protein kinase, interferon-inducible double stranded RNA dependent activator: Inhibits EIF2AK2: Binds to US11 Peters et al, 2002
  • FCGR1A FCGR1B Fc fragment of IgG, high affinity Ia and 1b receptor (CD64) A herpes viral mimic of these receptors binds to immunoglobulin G Lin et al, 2004
  • FKBP4 FK506 binding protein 4, 59kDa: Protein regulated by infection in hepatoma cells Santamaria et al, 2009
  • FLT3LG fms-related tyrosine kinase 3 ligand: Latency is reduced in CD8 knockout mice Mott et al, 2008
  • HAVCR2 hepatitis A virus cellular receptor 2 (Tim-3) : regulates viral immunopathology Sehrawat et al, 2009
  • HLA-A HLA-A*0201 is involved in viral epitope recognition Chentoufi et al, 2008
  • HLA-B Involved in viral immunity Yasukawa et al, 1983
  • HLA-DMA Binds to Glycoprotein B [88] (Human leukocyte antigen)
  • HLA-DMB Binds to Glycoprotein B [88]
  • HLA-DRB1 Binds to Glycoprotein B [89]
  • HLA-DRB3 Binds to Glycoprotein B [89]
  • HLA-DRB4 Binds to Glycoprotein B [89]
  • HLA-G The vurus blocks the intracellular transport of HLA-G in placentally derived human cells Schust et al, 1996.
  • IFI16 interferon, gamma-inducible protein 16: Immune sensor for viral DNA Unterholzner et al, 2010
  • IFIH1 interferon induced with helicase C domain 1: (MDA-5): Involved in viral recognition in human macrophages Melchjorsen et al, 2010 Interacts with US11 Xing et al, 2012
  • IFNA1 interferon, alpha 1: establishes latency in sensory neorones in vitro De Regge et al, 2010
  • IFNAR1 interferon (alpha, beta and omega) receptor 1 (IFNA1 receptor)
  • IFNAR2 interferon (alpha, beta and omega) receptor 2
  • IFNA IFNG blocks viral reactivation (per se) Decman et al, 2005 or with interferons alpha and beta IFNA and IFNB1 Sainz and Halford , 2002
  • IFNB1 interferon, beta 1, fibroblast: IFNG blocks viral reactivation (per se) Decman et al, 2005 or with interferons alpha and beta IFNA and IFNB1 Sainz and Halford , 2002
  • IFNG interferon, gamma: Generally antiviral macrophage activator: Regulates viral latency Lafon, 2009 IFNG blocks viral reactivation (per se) Decman et al, 2005 or with interferons alpha and beta IFNA and IFNB1 Sainz and Halford , 2002
  • IFNG interferon, gamma: IFNG induced NOS1 inhibits viral replication [228]
  • IFNGR1 interferon gamma receptor 1: Phosphorylated by tegument US3 kinase [92]
  • IFNL1 interferon, lambda 1: Inhibits neuronal and astrocytic HSV-1 infection Li et al, 2011
  • IgG Immunoglobulin G: Glycoprotein E and glycoprotein L form a decoy Fc receptor binding to IgG [90]
  • IFRD1 interferon-related developmental regulator 1 (TIS7) : Induced by infection in the trigeminal ganglia Tal-Singer et al, 1998
  • IL1A interleukin 1, alpha: transcription inhibited by infection Erik et al, 1991
  • IL1B interleukin 1, beta: induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • IL1RN interleukin 1 receptor antagonist: Administration reduces the severity of Herpetic stromal keratitis resulting from corneal Herpes simplex virus infection Biswas et al, 2004
  • IL2 interleukin 2 (Lymphokine): Depletion increases HSV-1 virulence Ghiasi et al, 2002
  • IL4 interleukin 4: Regulates the recruitment of leukocytes into central nervous system following infection Vilela et al, 2011. IL25 acts synergistically with IL4 and IL13 to enhance HSV-1 replication in vitro Kim et al, 2013
  • IL6 interleukin 6 (interferon, beta 2): Binds to IL6 response elements in the LAT promoter and ICP0 genes [91] induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • IL7 interleukin 7: involved in the inflammatory response in herpes simplex keratitis Arrunategui-Correa et al, 1999.
  • IL7R interleukin 7 receptor: Knockour regulates infection and viral encephalitis Lundberg et al, 2008
  • IL8 interleukin 8: Expression of U(L)37 in transfected cells leads to IkappaB degradation and activation of the IL8 gene Liu et al, 2008
  • IL10 interleukin 10: Inhibits the production of imflammatory mediators induced by infection Marques et al, 2004
  • IL12A interleukin 12A (natural killer cell stimulatory factor 1, cytotoxic lymphocyte maturation factor 1, p35) Regulates infection in stromal keratitis Frank et al, 2010 induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • IL12B interleukin 12B (natural killer cell stimulatory factor 2, cytotoxic lymphocyte maturation factor 2, p40) Regulates infection in stromal keratitis Frank et al, 2010
  • IL13 interleukin 13: IL-4 and IL-13, modulate TLR9 and herpes simplex virus-induced plasmacytoid dendritic cells Tel et al, 2011 IL25 acts synergistically with IL4 and IL13 to enhance HSV-1 replication in vitro Kim et al, 2013
  • IL15 interleukin 15: Upregulated by infection Ahmad et al, 2007 protecting against infection Tsunobuchi et al, 2000
  • IL16 interleukin 8: delays infection Archin et al, 2003
  • IL17A interleukin 17A: IL-17 neutralization diminishes tromal ketaitis severity Suryawanshi et al, 2011.
  • IL17F interleukin 17F : Involved in the effects of IL6 on viral inflammation Shim et al, 2009
  • IL17RA interleukin 17 receptor A: knockout reduces stromal keratitis in HSV-1 infection Suryawanshi et al, 2011
  • IL18 interleukin 18: protects mice against viral infection [229]
  • IL21 interleukin 21: helps promote an immune response to vaccination agsinst the virus Hu et al, 2011
  • IL23A interleukin 23, alpha subunit p19 : knockout increases the severity of infection Kim et al, 2008
  • IL25 – interleukin 25: IL-25 acts synergistically with IL-4 and IL-13 to enhance HSV-1 replication in vitro Kim et al, 2013
  • IL28A interleukin 28A (interferon, lambda 2): Suppresses infection in human neuronal NT-2 cell line Zhou et al, 2011
  • IL29 interleukin 29 (interferon, lambda 1): Mediates antiviral effects in keratinocytes Zhang et al, 2011
  • IRF1 interferon regulatory factor 1: modulates the antiviral effects of interferon alpha Kawamoto et al, 2003
  • IRF3 interferon regulatory factor 3 : Infection activates and ICP0 inhibits IRF3 activation Melroe et al, 2007 : Paladino et al, 2010
  • IRF5 interferon regulatory factor 5: HSV-1 infection activates IRF5 Barnes et al, 2002
  • IRF7 interferon regulatory factor 7 : activated by infection Tsitoura et al, 2009
  • IRF9 interferon regulatory factor 9 : activated by infection Chee and Roizman, 2004
  • IFIT1 interferon-induced protein with tetratricopeptide repeats 1 (ISG56) IRF3 activation stimulates ISG56 expression in HSV-infected cells Collins et al, 2004
  • KLRK1 killer cell lectin-like receptor subfamily K, member 1: (NKG2D) Involved in immune responses to HSV-1 reactivation Schepis et al, 2009
  • LCK lymphocyte-specific protein tyrosine kinase Phosphorylated by tegument VP11/12 Wagner & Smiley, 2009
  • LGALS1 lectin, galactoside-binding, soluble, 1 : Expression and secretion increased by infection leading to apoptosis of activated T cells Gonzalez et al, 2005
  • LGALS3 lectin, galactoside-binding, soluble, 3: HSV1 increases the release and carbohydrate binding activity of galectin 3 King et al, 2009 HSV1 binds to Galectin 3 Woodward et al, 2013
  • LGALS9 lectin, galactoside-binding, soluble, 9: (Gelectin 9 : Ligand for HAVCR2) regulates viral immunopathology Sehrawat et al, 2009
  • LIFR leukemia inhibitory factor receptor alpha (CD118) Knockout increases occular infection Conrady et al, 2011
  • MAL2 T-cell differentiation protein 2 (gene/pseudogene) (MAL proteolipid protein 2): Expression increased after infection, colocalising with HSV-1 proteinsin a a human oligodendroglial cell line Bello-Morales et al, 2005
  • MAVS mitochondrial antiviral signaling protein: Involved in viral recognition in human macrophages Melchjorsen et al, 2010
  • MB21D1 Mab-21 domain containing 1: (Cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS)); Knockout mice more susceptible to lethal infection with HSV-1 Li et al, 2013
  • MICA MHC class I polypeptide-related sequence A: Involved in immune responses to HSV-1 reactivation Schepis et al, 2009
  • MIF macrophage migration inhibitory factor (glycosylation-inhibiting factor) (also dopachrome tautomerase) Virion component Loret et al, 2008 and Stegen et al, 2013
  • MON1B MON1 homolog B (yeast) (HSRG1) : HSV-1 stimulation-related gene 1 protein): Inhibits viral replication by binding to cyclin T2 Wu et al, 2011
  • MX1 myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse): Associates with HSV-1 virions and enhances infection Ku et al, 2011
  • MYD88 myeloid differentiation primary response gene (88): (signal transducer in the interleukin-1 and Toll-like receptor signaling pathways) ICP0 reduces myd88 and TIRAP levels Van Lint et al, 2010
  • NLRC3 NLR family, CARD domain containing 3 : HSV-1-infected Nlrc3 knockout mice show enhanced innate immunity, reduced morbidity and lower viral load Zhang et al, 2014.
  • PSMB5 proteasome (prosome, macropain) subunit, beta type, 5: binds to tegument protein UL37 Kelly et al, 2011
  • PSMB8 proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional peptidase 7): Part of the immunoproteasome dowregulated by infection suggesting a posible role in immune escape Eisemann et al, 2009
  • PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa: Downregulated by infection via a mechanism involving the virion host shutoff protein Theodoridis et al, 2009
  • PTGER4 prostaglandin E receptor 4 (subtype EP4): Downregulated by infection via a mechanism involving the virion host shutoff protein Theodoridis et al, 2009
  • OAS1 2'-5'-oligoadenylate synthetase 1, 40/46kDa: Inhibited by US11 Sànchez and Mohr, 2007
  • OAS2 2'-5'-oligoadenylate synthetase 2, 69/71kDa: Inhibited by US11 Sànchez and Mohr, 2007
  • PPIA peptidylprolyl isomerase A (cyclophilin A) : Virion component Loret et al, 2008
  • PRH1 proline-rich protein HaeIII subfamily 1: Salivary proline rich proteins and cystatins inhibit viral replication Gu et al, 1995
  • PRH2 proline-rich protein HaeIII subfamily 2: Salivary proline rich proteins and cystatins inhibit viral replication Gu et al, 1995
  • SAMHD1 SAM domain and HD domain 1: suppresses the replication of a wide range of DNA viruses, including HSV-1, as well as retroviruses Hollenbaugh et al, 2013
  • SLPI secretory leukocyte peptidase inhibitor: Downregulated by infection Fakioglu et al, 2008
  • TAP1 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) Binds to ICP47 Galocha et al, 1997
  • TAP2 transporter 2, ATP-binding cassette, sub-family B (MDR/TAP) (Involved in antigen presentation) : Binds to ICP47 Galocha et al, 1997
  • TBK1 TANK-binding kinase 1: Binds to gamma(1)34.5 protein Verpooten et al, 2009
  • TICAM1 toll-like receptor adaptor molecule 1: involved in innate immunity against invading pathogens. via TLR3: mediates dsRNA induction of interferon-beta (IFNB) via NFKB1 activation during an antiviral immune response (RefSeq) ribonucleotide reductase R1 subunits of herpes simplex virus 1 and 2 protect cells against poly(I · C)-induced apoptosis by preventing TICAM1/RIPK1 interaction .Dufour et al, 2011
  • TIRAP toll-interleukin 1 receptor (TIR) domain containing adaptor protein: ICP0 reduces myd88 and TIRAP levels Van Lint et al, 2010
  • TLR2 toll-like receptor 2: HSV-1 Herpes simplex virus glycoproteins gH/gL and gB bind to TLR2 Leoni et al, 2012 (Toll receptors)
  • TLR3 toll-like receptor 3 deficiency is an important determinant of herpes simplex virus 1 encephalitis Guo et al, 2011
  • TLR4 toll-like receptor 4: Expression induced by infection in astrocytes Villalba et al, 2012
  • TLR7 toll-like receptor 7: Virus-cell fusion stimulates a type I interferon response with expression of interferon-stimulated genes, in vivo recruitment of leukocytes and potentiation of signaling via TLR7 and TLR9 Holm et al, 2012
  • TLR8 toll-like receptor 8: activation of TLR3 or TLR8 by poly-I:C or single stranded RNA prior to HSV-1 infection reduces the susceptibility of the neuronal cells to infection. Zhou et al, 2009
  • TLR9 toll-like receptor 9 : Knockout increases susceptibility to the virus Lima et al, 2010
  • TMEM173 transmembrane protein 173: (ERIS; MITA; MPYS; NET23; STING; FLJ38577): Knockout mice are more susceptible to infection Ishikawa et al, 2009
  • TNF induced by herpes simplex infection in microglial cells Aravalli et al, 2009
  • TNFSF4 tumor necrosis factor (ligand) superfamily, member 4 (OX40L) : Rapid infiltration of activated (OX40(+)) CD4(+) T cells into HSV-1-infected corneas and expression of OX40L on MHC Class II-negative cells Lepisto et al, 2007
  • TNFSF9 tumor necrosis factor (ligand) superfamily, member 9 (4-1BB ligand) Deletion prevents herpetic stromal keratitis Seo et al, 2003
  • TNFRSF1A tumor necrosis factor receptor superfamily, member 1A: Regulates the severity of HSV-1 encephalitis Viela et al, 2010
  • TNFRSF9 : tumor necrosis factor receptor superfamily, member 9 (4-1BB) : Blockade prevents herpetic stromal keratitis Seo et al, 2003
  • TRAF3 deficiency leads to impaired TLR3 resposes and increased susceptivility to viral encephalitis Pérez de Diego et al, 2010 Viral protein UL36 deubiquitinates TRAF3 preventing recruitment of the downstream adaptor - tank binding kinase TBK1 Wang et al, 2013
  • TRAF6 TNF receptor-associated factor 6: Binds to tegument protein UL37 [100]
  • TRD@ T cell receptor delta locus: TCR-gamma/delta cells limit HSV-1-induced epithelial lesions and reduce mortality Sciammas et al, 1997
  • TRG@ T cell receptor gamma locus: TCR-gamma/delta cells limit HSV-1-induced epithelial lesions and reduce mortality Sciammas et al, 1997
  • ULBP2 UL16 binding protein 2: Downregulated by infection Schepis et al, 2009
  • XCL1 chemokine (C motif) ligand 1: Upregulated by infection Araki-Sasaki et al, 2006
  • ZBP1 Z-DNA binding protein 1 (DNA-dependent activator of interferon regulatory factors): intracellular sensor for DNA viruses Furr et al, 2011

Immune system

Cell signalling

Cell signalling

Mitochondrial

Mitochondria

Nuclear import export

Nucleus

Nuclear transport

Nuclear Proteins

Nucleosome

Chromatin remodelling

DNA repair, replication, recombination

DNA repair

RNA binding, splicing and Ribosomal

  • KHSRP KH-type splicing regulatory protein: KSRP is required for the decay of Ifna4 and Ifnb mRNAs by interaction with AU-rich elements: increased IFN expression renders Ksrp knockout cells refractory to HSV-1 and vesicular stomatitis virus infection Lin et al, 2011
  • QK1 Quaking: QKI directly interferes with viral replication: Sánchez-Quiles et al, 2011
  • RPL22 ribosomal protein L22 (Epstein-Barr virus small RNA-associated protein): Binds to ICP4 [149]
  • RPL30 ribosomal protein L30: Phosphorylated by infection Simonin et al, 1995
  • RPS6 Viral infection induces non-reversible phosphorylation of ribosomal protein S6 Diaz et al, 2002
  • PRPF19 PRP19/PSO4 pre-mRNA processing factor 19 homolog (S. cerevisiae) : Binds to ICP8 Taylor and Knipe 2004
  • RUVBL1 RuvB-like 1 (E. coli): Binds to ICP8 Taylor and Knipe, 2004
  • SAP30 Sin3A-associated protein, 30kDa: a viral promoter interacts with SAP30 Chen et al, 2010
  • SAP30BP SAP30 binding protein induced by viral infection inhibiting a viral promoter that interacts with SAP30 Chen et al, 2010
  • SAP130 Sin3A-associated protein, 130kDa: Binds to ICP8 Taylor and Knipe 2004
  • SF3B1 splicing factor 3b, subunit 1, 155kDa (ex SAP155) Binds to ICP8 Taylor and Knipe 2004
  • SF3B2 splicing factor 3b, subunit 2, 145kDa Binds to ICP27 [191]
  • SFRS3 serine/arginine-rich splicing factor 3: Nuclear export of HSV-1 mRNA [150]
  • SFRS7 serine/arginine-rich splicing factor 7: Nuclear export of HSV-1 mRNA [150]
  • SYNCRIP synaptotagmin binding, cytoplasmic RNA interacting protein: Binds to ICP8 Taylor and Knipe 2004 Also binds to synaptotagmins (viral release?)
  • TAF6 TAF6 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 80kDa: Interacts with UL38 promoter [151]
  • THOC7 THO complex 7 homolog (Drosophila): binds to tegument protein UL37 Kelly et al, 2011
  • U2AF1 U2 small nuclear RNA auxiliary factor 1: binds to VP22 Li et al, 2011

Ribosome

Host transcription factors

  • AICDA activation-induced cytidine deaminase edits the viral genome Suspène et al, 2011
  • APOBEC1 apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 edits HSV-1 viral DNA Gee et al, 2011
  • APOBEC3C : apolipoprotein B mRNA editing enzyme edits viral DNA also APOBEC3A, APOBC3G Suspène et al, 2011
  • ATF1 Binds to Latency promoter [152]
  • ATF2 activating transcription factor 2: or ATF4 activating transcription factor 4 (tax-responsive enhancer element B67) (CREB2) Binds to Latency promoter [152]
  • ATF6 activating transcription factor 6: An octapeptide in VP16 is 75% holologous with ATF6 Thuerauf et al, 2002
  • BMI1 polycomb ring finger oncogene: Associates with the HSV-1 genome particularly at the LAT enhancer [153]
  • CREB1 cAMP responsive element binding protein 1: Binds to Latency promoter [152]
  • CREB3 (LUMAN: human VP16 homolog) modifies latency and reactivation [230]
  • CTCF Binds to genome in between LAT and ICP0 [154]
  • EBF1 early B-cell factor 1 binds to ICP0 promoter Devireddy and Jones, 2000
  • EGR1 Regulates ICP4 and ICP22 [155]
  • EGR2 early growth response 2: Binds to the LAT promoter Tatarowicz et al, 1997
  • GABPA GA binding protein transcription factor, alpha subunit 60kDa: Controls the expression of viral intermediate genes via interaction with the viral ICP4 promoter [156]
  • GABPB2 GA binding protein transcription factor, beta subunit 2" " [156]
  • HOXA5 homeobox A5: Increased severity of occular legions in HOXA5 transgenic mice Gaille et al, 2005
  • JUND Binds to Latency promoter [152]
  • NFKB1 Binds to the ICP0 promoter [157]
  • NFYA Binds to the ICP0 promoter [158]
  • POU2F1 POU class 2 homeobox 1 Complexes with alpha-TIF participating in the expression of viral intermediate early genes [159]
  • POU2F2 POU class 2 homeobox 2: " " [159]
  • POU2F3
  • POU3F2 binds viral TAATGARAT motifs Hagmann et al, 1995
  • POU4F1 POU class 4 homeobox 1 Binds to viral genome [160]
  • REST RE1-silencing transcription factor: Regulates expression of ICP4 and ICP22 [161]
  • RCOR1 REST corepressor 1 Binds to ICP0 [162]
  • SCXA scleraxis homolog A (mouse) : binds to VP22 Li et al, 2011
  • SP1 Binds to a site in the ORIS region [163]
  • SP3 Sp3 transcription factor: Binds to a site in the ORIS region [163]
  • STAT1 signal transducer and activator of transcription 1, 91kD: Binds to the LAT promoter [164]
  • TFCP2 transcription factor CP2 (LBP1C, LSF, LSF1D, SEF, TFCP2C): Binds origin of replication site [165]
  • Thyroid hormone T3 ( Triiodothyronine ) controls the gene expression of HSV-1 LAT and ICP0 in neuronal cellsegr Bedadala et al, 2010.
  • THRA thyroid hormone receptor, alpha: The viral thymidine kinase gene contains a thyroid hormone response element Park et al, 1993
  • THRB Thyroid hormone receptor beta Binds to the LAT promoter and controls LAT and ICP0 [166]
  • UBTF upstream binding transcription factor, RNA polymerase I Recruited into viral replication compartments [167]
  • USF1 upstream transcription factor 1: Binds to the latency associated transcript [168]
  • USF2 upstream transcription factor 2, c-fos interacting "" [168]
  • YY1 Yin-Yang 1 YY1 transcription factor Binds to leaky-late genes [169]

HISTONES and Other DNA binding

  • Histones can also act as surface receptors for bacterial lipopolysaccharide Bolton and Perry 1997 and viruses Tamura et al, 2003
  • ASF1B anti-silencing function 1B histone chaperone|: binds to DNA polymerase UL30 and helicase primase UL52: HCFC1-dependent [172]
  • ARID1A AT rich interactive domain 1A (SWI-like): host epigenetic factor positively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • BAZ1B bromodomain adjacent to zinc finger domain, 1B : host epigenetic factor positively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • HCFC1 host cell factor C1 (VP16-accessory protein) Binds to viral genome [173]
  • HCFC2 host cell factor C2 "" [174]
  • Histone H1 (HIST1H1A H1F0 HIST1H1D HIST1H1E HIST1H1B ) Binds to viral genome Conn et al, 2008
  • HIST1H3E – histone cluster 1, H3e : binds to the viral genome after HSV-1 DNA replication Conn et al, 2013
  • Histone H2A (many gene symbols) binds to viral genome Conn et al, 2008
  • HIST2H4A histone cluster 2, H4a : Mobilised by infection. Conn et al, 2011
  • HIST2H2BE histone cluster 2, H2be: Mobilised by infection. Conn et al, 2011
  • H2AFX H2A histone family, member X: phosphorylation increased by infection Wilkinson and Weller, 2006
  • Histone H2B (many gene symbols) Binds to viral genome Conn et al, 2008
  • H3F3A H3 histone, family 3A Associated with the HSV-1 genome Placek et al, 2009
  • H3F3B ""
  • Histone H3.1 HIST1H3A HIST3H3 Placek et al, 2009
  • HIST2H2BE histone cluster 2, H2be: Mobilised during infection Conn et al, 2011
  • HIST4H4 Histone H4 Bind to Viral genome [177] Mobilised during infection Conn et al, 2011
  • HDAC1 histone deacetylase 1: Phosphorylated by US3 kinase [178]
  • HDAC2 histone deacetylase 2: Binds to ICP8 Taylor and Knipe 2004 Phosphorylated by US3 kinase Walters et al, 2010
  • HDAC4 histone deacetylase 4: Binds to ICP0 [179]
  • HDAC5 histone deacetylase 5: Binds to ICP0 [179]
  • HDAC7 histone deacetylase 7 : Binds to ICP0 [179]
  • HMGA1 high mobility group AT-hook 1: Binds to promoter regions of immediate early genes and thymidine kinase and glycoprotein C [180]
  • HMGB1 high mobility group box 1: Activates ICP4 [181]
  • HMGN1 high mobility group nucleosome binding domain : binds nucleosomal DNA and is associated with transcriptionally active chromatin.:Interacts with several viral partners (EP300 IRF2 PRKACA YWHAZ) NCBI interactions
  • ING1 inhibitor of growth family, member 1: host epigenetic factor negatively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • ING5 inhibitor of growth family, member 5: host epigenetic factor positively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • JMJD8 jumonji domain containing 8 : host epigenetic factor positively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • KAT2B K(lysine) acetyltransferase 2B Binds to ICP0 Li et al, 2009
  • KAT5 K(lysine) acetyltransferase 5 (Tip60) : Activated by viral kinases promoting replication Li et al, 2011
  • KDM1A lysine (K)-specific demethylase 1A (histone demethylase) Recruited to viral intermediate early promoters, an effect inhibited by monoamine oxidase inhibitors [183]
  • KDM3A lysine (K)-specific demethylase 3A: host epigenetic factor positively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • KDM4E lysine (K)-specific demethylase 4E : Inhibition has anti-viral activity against both HSV-1 and human cytomegalovirus infection via inhibition of viral intermediate early gene expression Rai et al, 2013
  • KDM6A lysine (K)-specific demethylase 6A: host epigenetic factor positively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • INSM1 insulinoma-associated 1 binds to ICP0 promoter Kamakura et al, 2011
  • METTL17 methyltransferase like 17: host epigenetic factor positively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • NUMA1 nuclear mitotic apparatus protein 1: required for efficient infection Yamauchi et al, 2008
  • PDS5B PDS5, regulator of cohesion maintenance, homolog B: host epigenetic factor negatively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • PHF10 PHD finger protein 10: host epigenetic factor positively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • PRMT1 protein arginine methyltransferase 1 : Methylates ICP27 [184]
  • RCC1 regulator of chromosome condensation 1 Knockdown inhibits viral replication Umene and Nishimoto, 1996
  • SET SET nuclear oncogene: Binds to tegument protein VP22 [140]
  • SMARCE1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1: host epigenetic factor positively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • SUDS3 suppressor of defective silencing 3 homolog: host epigenetic factor negatively regulating viral gene expression in U2OS osteosarcoma cells Oh et al, 2014
  • SUZ12 suppressor of zeste 12 homolog: recruited to the viral genome during establishment of latency Cliffe et al, 2013

Histones

Translation

MicroRNAs

  • MIR101 regulates HSV-1 replication by targeting ATP5B Zheng et al, 2011
  • MIR146A microRNA 146a: Upregulated by infection, resulting in CFH downregulation Hill et al, 2009
  • MIR132 microRNA 132: upregulated after infection negative affecting expression of interferon-stimulated genes, facilitating viral replication (Kaposi's sarcoma virus, cytomegalovirus and HSV-1) Lagos et al, 2010.

Translation

Apoptosis

  • APAF1 apoptotic peptidase activating factor 1: Activated by the vhs shutoff protein Saffran et al, 2010
  • BAD BCL2-associated agonist of cell death Phosphorylated by tegument kinase US3 [192]
  • BAG3 BCL2-associated athanogene 3: Kyratsous and Silverstein, 2008
  • BAX BCL2-associated X protein: HSV-1 infection blocks BAX translocation to mitochondria [193]
  • BCL2 B-cell CLL/lymphoma 2: ICP27 induces apoptotic cell death via reactive oxygen species and BCL2 downregulation Kim et al, 2008
  • BID BH3 interacting domain death agonist Phosphorylated by tegument kinase US3 [194]
  • CAPN1 calpain 1, (mu/I) large subunit: ICP0 protein levels in cultured primary neurones are increased by inhibition of calcium-activated protease (calpain) activity or by calcineurin inhibition (PPP3CA, PPP3CB PPP3CC) Chen et al, 2000.
  • CASP3 caspase 3, apoptosis-related cysteine peptidase US3 phosphorylates procaspase 3 [195] CASP3 induces and inhibitors reduce reactivation [204]
  • CASP7 Caspase 7: Involved in viral blockade of apoptosis Hsu et al, 2010
  • CASP8 caspase 8, apoptosis-related cysteine peptidase binds to herpes simplex ribonucleotide reductase R1 Dufour et al, 2011
  • CASP9 caspase 9, apoptosis-related cysteine peptidase: activated by infection He et al, 2011
  • CTSB cathepsin B cleaves the origin binding protein Link et al, 2007
  • CFLAR CASP8 and FADD-like apoptosis regulator: The latency transcript encodes CFLAR (FLIP) sequences that can block CASP8 apoptosis [196]
  • CSTA – cystatin A (stefin A): Possesses antiviral activity Kan et al, 2012
  • CST3 cystatin C Blocks HSV-1 replication [197]
  • CST5 Cystatin D inhibits viral induced apoptosis and yield Peri et al, 2007
  • CYCS Cytochrome C HSV-1 infection increases CYTc translocation to the cytoplasm (apoptotic) [193]
  • FADD regulated by CFLAR and involved in caspase action
  • GLTSCR2 glioma tumor suppressor candidate region gene 2 Binds to ICP0 and ICP22 [198]
  • GZMB granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1) Degrades ICP4 [199]
  • HIPK2 homeodomain interacting protein kinase 2 Binds to tegument protein US11 [200]
  • IER3 immediate early response 3: RNA degradatation modified by UL41 Esclatine et al, 2004
  • PDCD4 programmed cell death 4 (neoplastic transformation inhibitor) interacts with the viral US3 protein Wang et al, 2011
  • PDCD6 programmed cell death 6 Virion component Loret et al, 2008
  • RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1 binds to herpes simplex ribonucleotide reductase R1 Dufour et al, 2011
  • SH3GLB1 SH3-domain GRB2-like endophilin B1: Protein regulated by infection in hepatoma cells Santamaria et al, 2009
  • TGFB1 transforming growth factor, beta 1 Downregulated by a microRNA encoded by the LAT transcript [201]
  • TGFBR2 transforming growth factor, beta receptor II (70/80kDa):Latency is modified in TGFBR2 knockout mice Allen et al, 2011
  • SMAD3 SMAD family member 3 Downregulated by a microRNA encoded by the LAT transcript [201]
  • C9orf9 chromosome 9 open reading frame 9 binds to UL25 Zhang et al, 2011

 

Apoptosis

Neuronal, glial and myelin

  • ACHE acetylcholinesterase: activity reduced by infection in PC12 cells Rubenstein and Price, 1984
  • Adrenaline can reactivate the virus : Viral reactivation can be blocked by propanolol (beta adrenergic receptor antagonist) Hill et al, 1996 Gebhardt and Kaufman 1995 ADRB1or ADRB2
  • Activators of the capsaicin receptor TRPV1 (transient receptor potential cation channel, subfamily V, member 1) reactivate HSV-1 Hunsperger and Wilcox , 2003
  • ADORA1 – adenosine A1 receptor: imiquimod (ADORA1 antagonist) induces the host antiviral protein, cystatin A Kan et al, 2012
  • DNA viruses stimulate the synthesis of cyclic guanosine monophosphate-adenosine monophosphate ( cGAMP) which binds to STING, leading to the activation of IRF3 and the induction of interferon-ß Wu et al, 2013.
  • CALCA calcitonin-related polypeptide alpha: CGRP and substance P increase pro-inflammatory cytokine production in HSV-1 infected macrophages Yaraee et al, 2003
  • CHAT Choline acetyltransferase activity reduced by infection in PC12 cells Rubenstein and Price, 1984
  • GRIN1 glutamate receptor, ionotropic, N-methyl D-aspartate 1: NMDA receptor blockade reduces HSV-1-induced increases in class I expression by brain-derived antigen presenting cells (CD45(hi), suggesting that blockade of the NMDA receptor may limit CNS inflammation. Nair et al, 2007
  • Ouabain inhibits viral replication [236] (sodium potassium atpase inhibitor)
  • Expression increased in the trigeminal ganglia of infected mice treated with immunosuppressants (cyclophosphamide and dexamethasone) cyclin CCND2, ERBB2, GNAS, plasma glutathione peroxidase GPX3, glutathione transferase GSTM2, methyl CpG-binding protein 2 MECP2, pancreatic and duodenal homeobox 1 PDX1, peripherin (PRPH) prostaglandin E2 receptor PTGER4,retinal S-antigen SAG, Higaki et al, 2002
  • Expression decreased in the trigeminal ganglia of infected mice treated with immunosuppressants (cyclophosphamide and dexamethasone) peripheral myelin protein 22 (PMP22), decorin DCN , transcription factor AP-1 (JUN) , dystroglycan DAG1 , myelin protein zero MPZ , mitogen-activated protein kinase 3 (MAP3K3), prothymosin beta 4 TMSB4X, and brain lipid-binding protein (FABP7 ) Higaki et al, 2002
  • MAG Myelin associated glycoprotein Glycoprotein B entry receptor [18]
  • MTMR4 myotubularin related protein 4: (human homolog of the rhesus gene (LOC714621) used in the study) ownregulation of phosphatase genes (PNKP, SNAP23, PTPRU, LOC714621 and PPM1M) inhibits HSV-1 infection in rhesus astrocytes Yue et al, 2013
  • PNKP – polynucleotide kinase 3'-phosphatase: downregulation of phosphatase genes (PNKP, SNAP23, PTPRU, LOC714621 and PPM1M) inhibits HSV-1 infection in rhesus astrocytes Yue et al, 2013
  • PPM1M – protein phosphatase, Mg2+/Mn2+ dependent, 1M: downregulation inhibits HSV-1 infection in rhesus astrocytes Yue et al, 2013
  • PTPRU – protein tyrosine phosphatase, receptor type, U: downregulation inhibits HSV-1 infection in rhesus astrocytes Yue et al, 2013
  • QKI QKI, KH domain containing, RNA binding (Quaking) : QKI deletion of viral reduces immediate-early protein levels and viral yield Sánchez-Quiles et al, 2011
  • ROBO4 roundabout homolog 4, magic roundabout (Drosophila): activation reduces the sverity of viral keratitis Mulik et al, 2011
  • SNAP23 synaptosomal-associated protein, 23kDa: downregulation of phosphatase genes (PNKP, SNAP23, PTPRU, LOC714621 and PPM1M) inhibits HSV-1 infection in rhesus astrocytes Yue et al, 2013
  • TAC1 tachykinin, precursor 1: encodes four products of the tachykinin peptide hormone family, substance P and neurokinin A, neuropeptide K and neuropeptide gamma: substance P enhances the cytopathic effect of HSV in macrophages Yaraee et al, 2007
  • TH tyrosine hydroxylase activity depressed immediately after infection in PC12 cells Rubenstein et al, 1985
  • Viral infection internalises sodium channels [255]
  • Viral replication in neurones is regulated by neuronal activity, increased by GABA and Tetrodotoxin (voltage dependent sodium channel blocker ) and reduced by potassium chloride and GABA A receptor blockade (Subtype unknown : most GABA receptors contain GABRA1) Zhang et al, 2005
  • Nicotine patches reactivate the virus in latently infected rabbits Myles et al, 2003 an effect blocked by bupropion ( a dopamine/noradrenaline uptake blocker) Myles et al, 2004
  • A vacuolar H(+)-ATPase plays a role in the interferon mediated inhibition of viral glycoprotein transport Sidhu et al, 1999 Precise gene not identified but could be any of these candidates Concanamycins A (Conmy A) and B (Conmy B), which inhibit these atpases, block viral replication Hayashi et al, 2001

 

Viral reactivators

  • Cadmium can reactivate the virus in sensory ganglia [203]
  • Heat stress activates the virus in PC12 cells [205]
  • Histone deacetylase inhibitors sodium butyrate and trichostatin A can reactivate the virus in neuronal cells [206]
  • Dipyridamole ( a thromboxane synthase inhibitor TBXAS1 ) inhibits viral reactivation Tenser et al, 2001 and Fitzpatrick and Stringfellow, 1983
  • GAL9 knockdown ameliorates antiviral immune responses [208]
  • ICAM1 modifies resistance in mice [209]
  • ICAM5 intercellular adhesion molecule 5, telencephalin: Regulates cerebral chemokine and cytokine production in the brains of infected mice Tse et al, 2009
  • IL6 interleukin 6 (interferon, beta 2) : can reactivate the virus [91]
  • Lysophosphatidic acid can reactivate the virus Martin et al, 1999
  • Morphine can reactivate the virus in mice [210]
  • MMP9 matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase) knockdown increases survival in mice [211]
  • 17-beta-estradiol reactivates the virus via ESR1 [213]
  • Medroxyprogesterone acetate used for injectable hormonal contraception recativates the virus Cherpes et al, 2008
  • Stimulation of cAMP or protein kinase C pathways can reactivate the virus [214]
  • Theophylline, dibutyryl-cAMP and adrenaline can reactivate the virus in neuroblastoma cells [215]
  • Ultra-violet light can reactivate the cutaneous virus [217] and sunlight is a reactivation factor [218]
  • Stress related glucocorticoids suppress antiviral immunity [219]
  • Hypoxia enhances the replication of oncolytic herpes simplex Bennett et al, 2004

Viral inhibitors

  • Arginine (NO precursor) suppresses viral growth [220]
  • Bilirubin has antiviral effects Santangelo et al, 2012
  • Ascorbic acid and dehydroascorbic acid exert antiviral effects [22]
  • Caffeic acid and hot water extracts of coffee grinds inhibit viral replication Ikeda et al, 2011
  • Caffeine inhibits viral multiplication Murayama et al, 2008
  • Dehydroepiandrosterone, epiandrosterone and synthetic analogues, possess antiviral activity Torres et al, 2012
  • PTGS2: Cyclo-oxygenase 2 inhibition (bromfenac) can inhibit viral reactivation as can aspirin (and ibuprofen in vitro) [222] [223] [224] Indomethacin suppresses viral replication [225]
  • LALBA lactalbumin, alpha-: Esterified lactalbumin has antiviral activity Sitohy et al, 2007
  • Lysine has been reported to be of benefit in human infections [231] (no clinical trial yet to support this)
  • IDO1 (indoleamine 2,3-dioxygenase 1) (activated by IFNG) and TDO2 (tryptophan 2,3-dioxygenase activation have general antiviral and antibacterial effects which are blocked by tryptophan Adams et al, 2004 Schmidt et al, 2009 Spinal quinolinic acid levels and kynurenine hydroxylase activity ( KMO) are raised by infection Reinhard, 1998
  • Nitric oxide inhibits viral replication [233] via S-nitrosylation of viral proteins [234]
  • NOS2 knockouts are more susceptible to infection [235]
  • Poly-L-Histidine PL-lysine and PL-arginine have been reported to have antiviral properties [237]
  • Retinoic acid inhibits viral replication [238]
  • Salivary proline-rich proteins (PRB1 e.g.) or cystatins (CST3 eg) bind to viral particles and inhibit replication [239]
  • TRPV1 transient receptor potential cation channel, subfamily V, member 1: The TRPV1 agonist Capsaicin induces reactivation of HSV-1 in latently infected neurons Hunsperger and Wilcox, 2003
  • Sodium channels in the dorsal root ganglion are internalised following infection Storey et al, 2002
  • Viral infection decreases glutathione levels: Glutathione inhibits HSV-1 replication [240]
  • SLC1A2 solute carrier family 1 (glial high affinity glutamate transporter), member 2: Microglial SLC1A2 is upregulated by infection to provide glutathione and glutathione synthase (GSS) inhibition increases infection Persson et al, 2007
  • Vitamin E defficiency but not supplementation affects viral pathogenicity [241] Adequete Vitamin E levels are important for trafficking antigen-specific T cells to the brain, and dietary Vitamin E levels modulate T regulatory and dendritic cells in the periphery Sheridan and Beck, 2009.
  • TNFR1 (TNFRSF1A tumor necrosis factor receptor superfamily, member 1A ) knockout increases viral replication and lethality [242]
 

Antiviral plant and other extracts

 

Diverse

  • AQP1 aquaporin 1 (Colton blood group): and AQP4 aquaporin 4: In murine herpes simplex encephalitis AQP4 is downregulated in the acute phase of disease and AQP4 and AQP1 upregulated in the long term. These transporters regulate cerebral oedema Martinez Torres et al, 2007
  • BACE1 beta-site APP-cleaving enzyme 1: Expression increased in infected cells, along with that of nicastrin Wozniak et al, 2007
  • c12orf10 chromosome 12 open reading frame 10 (MYG1) Protein regulated by infection in hepatoma cells Santamaria et al, 2009
  • HSV-1 binds to an unspecifed Mg++ ATPase [252]
  • CAPN3 calpain 3, (p94): Calpain and calcineurin inhibitors increase the amount of the ICP0 viral protein in infected primary neurones and PC12 cells in culture Chen et al, 2000 CAPN3 is present in PC12 cells Marcilhac et al, 2006 (and probably others): Numerous calcineurin regulatory subunits exist including PPP3CA PPP3CB PPP3CC PPP3R1 and PPP3R2
  • CCT3 chaperonin containing TCP1, subunit 3 (gamma): binds to tegument protein UL37. Kelly et al, 2011
  • NARS2 asparaginyl-tRNA synthetase 2, mitochondrial (putative) :binds to tegument protein UL37. Kelly et al, 2011
  • PRNP prion protein: Increased expresssion predisposes to viral pathogenicity Thackray and Bujdoso, 2006
  • Viral Glycoprotein I posesses a mucin domain that is a universal substrate for O-Glycosylation by several transferases including GALNT1 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 1 (GalNAc-T1):; GALNT2 (UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2)): GALNT4 (UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 4 (GalNAc-T4)) and GALNT11 (UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 11 (GalNAc-T11) ) Norberg et al, 2007
  • HSV-1 viral immediate early RNA interacts with host factors, resulting in transcription of three dormant host fucosyltransferase genes (FUT3, FUT5, and FUT6), whose gene products are rate-limiting for the synthesis of a selectin receptor, the carbohydrate epitope sialyl Lewis X (sLe(x)) Nordén et al, 2009 FUT7 also upregulated by infection in T cells Nordén et al, 2013
  • Iron : ICP8 possesses a divalent cation binding site necessary for function : Bryant et al, 2012
  • KLHL24 kelch-like family member 24: hsv1-mir-H27, encoded within the viral genome, targets the mRNA of the cellular transcriptional repressor KLHL24 which inhibits transcriptional efficiency of viral immediate-early and early genes Wu et al, 2013.
  • Mucin (many isoforms) Prevents viral entry [253] Kolodkin-Gal et al, 2008
  • MCRS1 microspherule protein 1: Binds to ICP22 [254]
  • MSR1 macrophage scavenger receptor 1: knockout mice show increased susceptibility to infection with Listeria monocytogenes or herpes simplex virus type-1 Suzuki et al, 1997
  • OLR1 oxidized low density lipoprotein (lectin-like) receptor 1: Promoter activity and expression increased by HSV-1 in endothelial cells Chirathaworn et al, 2004
  • S100A11 S100 calcium binding protein A11 : Virion component Loret et al, 2008
  • TFRC transferrin receptor (p90, CD71): Virion component Loret et al, 2008
  • TSPAN13 Virion component Loret et al, 2008
  • YWHAE tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide: Virion component Loret et al, 2008
  • YWHAG tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide: Virion component Loret et al, 2008 and Stegen et al, 2013
  • YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide Virion component Loret et al, 2008 and Stegen et al, 2013
  • HSV-1 infection induces miRNA-146A [256] Predicted targets
  • EBNA-1 (Epstein-Barr Viral protein ) can transactivate immediate-early HSV-1 expression.Machuca et al, 1990
  • UNC93B1 unc-93 homolog B1 (C. elegans) : Absence of UNC93B1 leads to a survival disadvantage but does not impact viral replication or type I interferon levels in the brain in HSV-1-infected mice Wang et al, 2011
 

Antiviral drugs and treatments

 

Human diseases linked to Herpes simplex infection

Bulk experiments

Toll-like receptor 2 signaling is a mediator of apoptosis in herpes simplex virus-infected microglia Aravalli, et al, 2007

Modified Expression of apoptotic genes in HSV-infected microglial cells from C57BL/6 mice
ATF5 BCL10 BID CARD15 CASP11 CASP3 CASP8 DAD1 LTBR MAPK8IP1 POLB PRDX2 RNF7 TNFRSF12A TNFRSF21 TRAF3 TSC22D3

Modified Expression of apoptotic genes in HSV-infected TLR2KO microglial cells.
AKT1 ALS2CR2 API5 BAD BAG4 BAX BCL10B BCL2L14 BID BIRC5 BIRC6 BNIP2 BNIP3L CASP12 CASP3 CASP8AP2 CFLAR CIDEB CRADD FADD FAIM FASL HELLS IL10 MAPK8IP1 NFKB1 PAK7 RIPK2 RNF7 TNF TNFRSF21 TNFRSF5 TNFSF10 TP53 TRAF3 TSC22D3 ZC3HC1

Proteomic analysis of cells in the early stages of herpes simplex virus type-1 infection reveals widespread changes in the host cell proteome.Antrobus et al, 2009

Proteins modified: ABCF3 ACLY ACTB ALPI C12orf10 CALR CARHSP1 CBFB CBX3 CFL1 CHCHD3 COMMD8 CTSD DPYSL2 DUSP3 DYNC1I2 EFTUD2 ENO1 EXOSC2 FKBP4 GORASP2 GUK1 HNRNPC HNRNPK HNRPDL HSP90AA1 HSPA4 HSPA5 HSPA8 KHSRP L2HGDH LMNA MAP2K6 MATR3 MCM4 MCM6 MCMBP METAP1 MVD NDRG1 NDUFS1 NONO PAFAH1B1 PDHA1 PDXK PEF1 PPP1R8 PPP5C PRPS2 PSMA3 PSMC2 PTER RPS5 RPSA SDHA SFPQ SNAP23 SNX3 STMN1 TAF15 TBCC TOMM22 TUFM UFC1 UFD1L VDAC1 VIM

HSV-1 Cgal+ infection promotes quaking RNA binding protein production and induces nuclear-cytoplasmic shuttling of quaking I-5 isoform in human hepatoma cells.SantaMaria et al, 2009

Proteins modified: C12orf10 CAPG EIF3I ERLIN2 FKBP4 GSTP1 HNRNPK LGALS1 PPP2R1B RUVBL2 SEPT8 SERPINB6 TPT1

Conserved Herpesvirus Kinases Target the DNA Damage Response Pathway and TIP60 Histone Acetyltransferase to Promote Virus Replication.Li R, Zhu J, Xie Z, Liao G, Liu J, Chen MR, Hu S, Woodard C, Lin J, Taverna SD, Desai P, Ambinder RF, Hayward GS, Qian J, Zhu H, Hayward SD. Cell Host Microbe. 2011 Oct 4;10(4):390-400

  • Targets of the UL13 kinase include: AADAT ABI2 AFF4 ALF ANKS1A ARHGAP20 ARID3A ATF4 ATF7 AURKC BCL3 BFAR BLOC1S1 BMX BPNT1 BTG3 C16orf80 C17orf61 C1orf176 C22orf31 C5orf16 C6orf141 C9orf9 CAMK2A CAMK2B CAMKK1 CC2D1A CCNC CD99L2 CENTG1 CHAF1B CHES1 CHGB CHK1 CHRAC1 CSNK1E CSNK2A1 (CK2-alpha) CLK2 CLK3 CRIP2 CRSP9 CRY1 CSAG2 CSDA CSNK1G2 CSRP3 DAPK2 DCLRE1B DCP1A DDX39 DDX4 DDX43 DDX50 DDX54 DEPDC7 DFFB DHX29 DND1 DYRK2 E2F3 EBF4 ECSIT EFHA2 EIF4A2 EIF4H ENC1 EPHB3 ERAL1 MAPK1 (ERK2) ETV7 EXOSC3 EYA2 FAM118A FAM58A FGR FHL2 FLJ10404 FLJ20105 FOXP4 GMEB1 GPBP1 GRHL1 GRK5 GSPT1 HCFC2 HDAC8 HEXIM2 HIF1A HIRIP3 HIST2H2AA3 HSFY1 IFI27 IQWD1 IRF3 JARID1D JMJD2C JNK1 KHDRBS2 KIAA0892 KIAA1429 KIF12 KIS KLHL21 KLHL25 LIG1 LKAP LOC161931 LOC338328 LOXL1 LUZP2 LYPD5 MAGEA12 MAGEA4 MAGEA9 MAGEB6 MAGED4 MAP2K7 MAP4K5 MBNL3 MDFI MEF2B METTL3 MGC10334 MGC24103 MIER2 MLLT6 MLX MNAT1 MORN1 MRLC2 MSK1 MTERFD3 NCL NEK2 NFAT3 NOL10 NOLC1 NR4A2 NSUN3 NSUN4 NSUN5B NUP107 NUP133 OLIG3 ORC4L MAPK13 (p38-delta) MAPK12 (p38-gamma) PAGE4 PBX2 PCBP3 PCGF3 PDCD11 PDGFRA PER1 PHF15 PHF16 PHKG2 PIK3C3 PIM2 PIM3 PINX1 PITX1 PJA2 PKNOX1 EIF2AK2 PLK3 PMF1 PMS2L3 POGK POLD2 POLD4 POLE3 PPARBP PPARD PPP2R1B PPP2R5D PRDM10 PRKACB PRKCDBP PTBP1 PTCD1 PTMA PTRH2 PUM1 PUM2 RAB5B RAD23B RAD51 RBM19 RBPJ RCOR3 RET RFFL RFX3 RFX5 RIPK2 RIPK3 RKHD2 RNF141 RNF6 RNUXA RPA1 RPA2 RPP14 RPS6KA1 RPS6KA2 RXRA RXRG S100A11 SAFB SARS SFMBT1 SFRS11 SFRS2 SMAD4 SMYD5 SNCA SNF8 SOX5 SOX7 SRP75 SRPK1 SSBP3 STAG3 STK16 STK25 STK33 SUMO1 Supt6h SURB7 SURF4 TAF10 TAF6 TBC1D2 TFIIB TIMELESS TIP60 TIPIN TLE6 TRAT1 TREX1 TRIM16 TRIM62 TRIM69 TSC22D4 TSPAN2 TTF2 USF2 UTP18 UTP6 VAMP3 VAMP4 WDR61 WHSC2 WWP1 XPA ZBED1 ZBTB12 ZBTB44 ZC3H7A ZCCHC11 ZCCHC8 ZCRB1 ZDHHC11 ZDHHC23 Zfp92 ZFPL1 ZFYVE1 ZKSCAN1 ZNF184 ZNF238 ZNF250 ZNF263 ZNF291 ZNF330 ZNF35 ZNF364 ZNF397 ZNF428 ZNF471 ZNF576 ZNF597 ZNF655 ZNF658 ZNF692 ZNF765 ZSCAN2 ZSCAN20 ZSCAN21 ZW10

Upregulation of mouse genes in HSV-1 latent TG after butyrate treatment implicates the multiple roles of the LAT-ICP0 locus. Clement et al, 2011

Downregulated by more than two-fold: AQP5 ARPP21 B4GALNT2 BPIFB1 CRISP3 DMBT1 EXPI (KAL1 = human equivalent) GP2 HPCAL4 LIPF LRRC26 LTF MUC5B ODAM OIT1 PGLYRP1 PIGR SCN9A TFF2 WFDCR YWHAG

Upregulated: ASB4 CD274 CGA CLDN9 CMYA1 CNGA2 CRSP3 CXCL10 CYP1A2 CYP2A1 CYP2A5 CYP2G1 DLK1 ELL3 ERMN GPX6 GRAMD1C HIST2H2BE KLH14 LMOD2 MOBP MOG MUC2 MY12 MYL3 MYOM2 MYOZ2 OLIG1 OMP POMC1 PON1 RVA3 S100A5 SLC27A2 STOML3 SULT1D1 TRIM63 TSHB TTR TTR1 TTR2 UGT2A1 UGT2A2 UMOD11

Binding of Herpes Simplex Virus Type-1 Virions Leads to the Induction of Intracellular Signalling in the Absence of Virus Entry : MacLeod and Minson, 2010

Genes modified: A2M BCL2 BCL2A1 BCL2L1 BIRC1 BIRC2 BIRC3 BMP4 CCL2 CCND1 CDK2 CDKN1A CDKN2A CDKN2B CDKN2D CDX1 CSN2 CTSD CXCL9 EGR1 EN1 FAS FN1 FOS GADD45A IGFBP3 IRF1 JUNB KLK2 LTA MDM2 MMP10 MMP7 MYC NFKB1 NFKBIA NOS2A PECAM1 PTGS2 RBP1 TMEPA1 WISP2

A common neuronal response to alphaherpesvirus infection.Szpara et al, 2010

Microarray study (review): Genes modified by infection: ADAMTS1 ANKRD1 ANKRD22 AP3B2 ARHGAP18 ARHGAP5 ARHGDIB BTG2 C1R C2 C3 CAMK2G CAMK4 CCL4 CCL8 CD14 CD2 CD3D CD3G CD68 CD74 CD83 CD8A COL3A1 COL8A1 CPT1C CRISP3 CTNNA2 CTSD CTSH CTSJ CTSK CXCL12 CXCL9 CXCR6 DLK1 DUSP2 DUSP5 EGR1 EGR2 FCGR2B FCGR3 FOS FOSB FOSL1 GH GNAO1 H2-AA H2-D1 IDI1 IGHG1 IGJ IL1B IL2RG IRF1 IRGM1 ITGAM ITGB2 ITGB7 KCNAB1 KIF3C KIF5A KIF5C KLF2 KLF5 KRT4 MAN2B1 MMP10 MMP13 MMP3 ND4L NEFM PDK2 PPM1A PPP2R1B PRKAR1B PRKAR2A PRKCB PSMB8 PSMB9 RBM14 RGS4 RPL27A RPS2 RPSA SERPINH1 STAT1 TUBB2A TUBB4 ZIC1 ZIC3

A Systematic Analysis of Host Factors Reveals a Med23-Interferon-gamma Regulatory Axis against Herpes Simplex Virus Type 1 Replication Griffiths et al, 2013 (in progress).

 

Genes modifying the risk of HSV-1 infection in Man

References

View Stats

1.

A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Shukla, D., Liu, J., Blaiklock, P., Shworak, N.W., Bai, X., Esko, J.D., Cohen, G.H., Eisenberg, R.J., Rosenberg, R.D., Spear, P.G. Cell. (1999)

2.

A role for heparan sulfate in viral surfing. Oh, M.J., Akhtar, J., Desai, P., Shukla, D. Biochem. Biophys. Res. Commun. (2010)

3.

Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells. Bergefall, K., Trybala, E., Johansson, M., Uyama, T., Naito, S., Yamada, S., Kitagawa, H., Sugahara, K., Bergström, T. J. Biol. Chem. (2005)

4.

Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. Tal-Singer, R., Peng, C., Ponce De Leon, M., Abrams, W.R., Banfield, B.W., Tufaro, F., Cohen, G.H., Eisenberg, R.J. J. Virol. (1995)

5.

Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. Spear, P.G., Shieh, M.T., Herold, B.C., WuDunn, D., Koshy, T.I. Adv. Exp. Med. Biol. (1992)

6.

Evidence for an interaction of herpes simplex virus with chondroitin sulfate proteoglycans during infection. Banfield, B.W., Leduc, Y., Esford, L., Visalli, R.J., Brandt, C.R., Tufaro, F. Virology. (1995)

7.

Interaction of alpha-2-macroglobulin and HSV-1 during infection of neuronal cells. Alonso, M., Dimitrijevic, A., Recuero, M., Serrano, E., Valdivieso, F., López-Guerrero, J.A. J. Neurovirol. (2001)

8.

Herpes simplex virus binds to human serum lipoprotein. Huemer, H.P., Menzel, H.J., Potratz, D., Brake, B., Falke, D., Utermann, G., Dierich, M.P. Intervirology. (1988)

9.

Dendritic cells mediate herpes simplex virus infection and transmission through the C-type lectin DC-SIGN. de Jong, M.A., de Witte, L., Bolmstedt, A., van Kooyk, Y., Geijtenbeek, T.B. J. Gen. Virol. (2008)

10.

Complement-independent binding of microorganisms to primate erythrocytes in vitro by cross-linked monoclonal antibodies via complement receptor 1. Powers, J.H., Buster, B.L., Reist, C.J., Martin, E., Bridges, M., Sutherland, W.M., Taylor, R.P., Scheld, W.M. Infect. Immun. (1995)

11.

A new class of receptor for herpes simplex virus has heptad repeat motifs that are common to membrane fusion proteins. Perez, A., Li, Q.X., Perez-Romero, P., Delassus, G., Lopez, S.R., Sutter, S., McLaren, N., Fuller, A.O. J. Virol. (2005)

12.

Mediation of virion penetration into vascular cells by association of basic fibroblast growth factor with herpes simplex virus type 1. Baird, A., Florkiewicz, R.Z., Maher, P.A., Kaner, R.J., Hajjar, D.P. Nature. (1990)

13.

Fibroblast growth factor receptor is a portal of cellular entry for herpes simplex virus type 1. Kaner, R.J., Baird, A., Mansukhani, A., Basilico, C., Summers, B.D., Florkiewicz, R.Z., Hajjar, D.P. Science. (1990)

14.

Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread. Li, Q., Ali, M.A., Cohen, J.I. Cell. (2006)

15.

Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. Brunetti, C.R., Burke, R.L., Kornfeld, S., Gregory, W., Masiarz, F.R., Dingwell, K.S., Johnson, D.C. J. Biol. Chem. (1994)

16.

Herpes simplex virus type 1 glycoprotein H binds to alphavbeta3 integrins. Parry, C., Bell, S., Minson, T., Browne, H. J. Gen. Virol. (2005)

17.

Structurally homologous ligand binding of integrin Mac-1 and viral glycoprotein C receptors. Altieri, D.C., Etingin, O.R., Fair, D.S., Brunck, T.K., Geltosky, J.E., Hajjar, D.P., Edgington, T.S. Science. (1991)

18.

Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Suenaga, T., Satoh, T., Somboonthum, P., Kawaguchi, Y., Mori, Y., Arase, H. Proc. Natl. Acad. Sci. U. S. A. (2010)

19.

Nucleolin is required for efficient nuclear egress of herpes simplex virus type 1 nucleocapsids. Sagou, K., Uema, M., Kawaguchi, Y. J. Virol. (2010)

20.

The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. Said, E.A., Krust, B., Nisole, S., Svab, J., Briand, J.P., Hovanessian, A.G. J. Biol. Chem. (2002)

21.

Entry of herpes simplex virus 1 and other alphaherpesviruses via the paired immunoglobulin-like type 2 receptor alpha. Arii, J., Uema, M., Morimoto, T., Sagara, H., Akashi, H., Ono, E., Arase, H., Kawaguchi, Y. J. Virol. (2009)

22.

Glycoprotein D homologs in herpes simplex virus type 1, pseudorabies virus, and bovine herpes virus type 1 bind directly to human HveC(nectin-1) with different affinities. Connolly, S.A., Whitbeck, J.J., Rux, A.H., Krummenacher, C., van Drunen Littel-van den Hurk, S., Cohen, G.H., Eisenberg, R.J. Virology. (2001)

23.

A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Warner, M.S., Geraghty, R.J., Martinez, W.M., Montgomery, R.I., Whitbeck, J.C., Xu, R., Eisenberg, R.J., Cohen, G.H., Spear, P.G. Virology. (1998)

24.

Multiple receptor interactions trigger release of membrane and intracellular calcium stores critical for herpes simplex virus entry. Cheshenko, N., Liu, W., Satlin, L.M., Herold, B.C. Mol. Biol. Cell. (2007)

25.

Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. Krummenacher, C., Nicola, A.V., Whitbeck, J.C., Lou, H., Hou, W., Lambris, J.D., Geraghty, R.J., Spear, P.G., Cohen, G.H., Eisenberg, R.J. J. Virol. (1998)

26.

Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry. Bender, F.C., Whitbeck, J.C., Ponce de Leon, M., Lou, H., Eisenberg, R.J., Cohen, G.H. J. Virol. (2003)

27.

Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. Andersen, J.H., Jenssen, H., Sandvik, K., Gutteberg, T.J. J. Med. Virol. (2004)

28.

Herpes simplex virus triggers activation of calcium-signaling pathways. Cheshenko, N., Del Rosario, B., Woda, C., Marcellino, D., Satlin, L.M., Herold, B.C. J. Cell. Biol. (2003)

29.

Coagulation initiated on herpesviruses. Sutherland, M.R., Raynor, C.M., Leenknegt, H., Wright, J.F., Pryzdial, E.L. Proc. Natl. Acad. Sci. U. S. A. (1997)

30.

Involvement of the contact phase and intrinsic pathway in herpes simplex virus-initiated plasma coagulation. Gershom, E.S., Sutherland, M.R., Lollar, P., Pryzdial, E.L. J. Thromb. Haemost. (2010)

31.

Herpes simplex virus type 1-encoded glycoprotein C contributes to direct coagulation factor X-virus binding. Livingston, J.R., Sutherland, M.R., Friedman, H.M., Pryzdial, E.L. Biochem. J. (2006)

32.

Herpes simplex virus immediate-early proteins ICP0 and ICP4 activate the endogenous human alpha-globin gene in nonerythroid cells. Cheung, P., Panning, B., Smiley, J.R. J. Virol. (1997)

33.

Activation of cellular promoters during herpes virus infection of biochemically transformed cells. Everett, R.D. EMBO. J. (1985)

34.

Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression. Pawliczek, T., Crump, C.M. J. Virol. (2009)

35.

Comprehensive characterization of extracellular herpes simplex virus type 1 virions. Loret et al, 2008

36.

Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6. Nishi, K., Saigo, K. J. Biol. Chem. (2007)

37.

The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Eom, C.Y., Lehman, I.R. Proc. Natl. Acad. Sci. U. S. A. (2002)

38.

The herpes simplex virus 1 U(L)34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. Ye, G.J., Vaughan, K.T., Vallee, R.B., Roizman, B. J. Virol. (2000)

39.

Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. Douglas, M.W., Diefenbach, R.J., Homa, F.L., Miranda-Saksena, M., Rixon, F.J., Vittone, V., Byth, K., Cunningham, A.L. J. Biol. Chem. (2004)

40.

Eclipse phase of herpes simplex virus type 1 infection: Efficient dynein-mediated capsid transport without the small capsid protein VP26. Döhner, K., Radtke, K., Schmidt, S., Sodeik, B. J. Virol. (2006)

41.

Herpes simplex virus tegument protein VP22 contains overlapping domains for cytoplasmic localization, microtubule interaction, and chromatin binding. Martin, A., O'Hare, P., McLauchlan, J., Elliott, G. J. Virol. (2002)

42.

Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules. Elliott, G., O'Hare, P. J. Virol. (1998)

43.

Alzheimer's disease-specific tau phosphorylation is induced by herpes simplex virus type 1. Wozniak, M.A., Frost, A.L., Itzhaki, R.F. J. Alzheimers. Dis. (2009)

44.

ICP0 dismantles microtubule networks in herpes simplex virus-infected cells. Liu, M., Schmidt, E.E., Halford, W.P. PLoS. One. (2010)

45.

Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of alzheimer's disease. Satpute-Krishnan, P., DeGiorgis, J.A., Bearer, E.L. Aging. Cell. (2003)

46.

Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides. Benboudjema, L., Mulvey, M., Gao, Y., Pimplikar, S.W., Mohr, I. J. Virol. (2003)

47.

PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein. Zheng, P., Eastman, J., Vande Pol, S., Pimplikar, S.W. Proc. Natl. Acad. Sci. U. S. A. (1998)

48.

Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A. Koshizuka, T., Kawaguchi, Y., Nishiyama, Y. J. Gen. Virol. (2005)

49.

Herpes simplex virus utilizes the large secretory vesicle pathway for anterograde transport of tegument and envelope proteins and for viral exocytosis from growth cones of human fetal axons. Miranda-Saksena, M., Boadle, R.A., Aggarwal, A., Tijono, B., Rixon, F.J., Diefenbach, R.J., Cunningham, A.L. J. Virol. (2009)

50.

Evidence of a role for nonmuscle myosin II in herpes simplex virus type 1 egress. van Leeuwen, H., Elliott, G., O'Hare, P. J. Virol. (2002)

51.

Alpha-herpesvirus infection induces the formation of nuclear actin filaments. Feierbach, B., Piccinotti, S., Bisher, M., Denk, W., Enquist, L.W. PLoS. Pathog. (2006)

52.

Phosphorylation of cytokeratin 17 by herpes simplex virus type 2 US3 protein kinase. Murata, T., Goshima, F., Nishizawa, Y., Daikoku, T., Takakuwa, H., Ohtsuka, K., Yoshikawa, T., Nishiyama, Y. Microbiol. Immunol. (2002)

53.

Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. Hoppe, S., Schelhaas, M., Jaeger, V., Liebig, T., Petermann, P., Knebel-Mörsdorf, D. J. Gen. Virol. (2006)

54.

Protein kinase D-dependent trafficking of the large Herpes simplex virus type 1 capsids from the TGN to plasma membrane. Rémillard-Labrosse, G., Mihai, C., Duron, J., Guay, G., Lippé, R. Traffic. (2009)

55.

The antiapoptotic herpes simplex virus glycoprotein J localizes to multiple cellular organelles and induces reactive oxygen species formation. Aubert, M., Chen, Z., Lang, R., Dang, C.H., Fowler, C., Sloan, D.D., Jerome, K.R. J. Virol. (2008)

56.

The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions. Dingwell, K.S., Johnson, D.C. J. Virol. (1998)

57.

Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Das, S., Laxminarayana, S.V., Chandra, N., Ravi, V., Desai, A. Virology. (2009)

58.

GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. Triantafilou, K., Fradelizi, D., Wilson, K., Triantafilou, M. J. Virol. (2002)

59.

Herpes simplex virus type 1 glycoprotein B requires a cysteine residue at position 633 for folding, processing, and incorporation into mature infectious virus particles. Laquerre, S., Anderson, D.B., Argnani, R., Glorioso, J.C. J. Virol. (1998)

60.

Calnexin associates with the precursors of glycoproteins B, C, and D of herpes simplex virus type 1. Yamashita, Y., Yamada, M., Daikoku, T., Yamada, H., Tadauchi, A., Tsurumi, T., Nishiyama, Y. Virology. (1996)

61.

Activation of the herpes simplex virus type-1 origin-binding protein (UL9) by heat shock proteins. Tanguy Le Gac, N., Boehmer, P.E. J. Biol. Chem. (2002)

62.

Nuclear sequestration of cellular chaperone and proteasomal machinery during herpes simplex virus type 1 infection. Burch, A.D., Weller, S.K. J. Virol. (2004)

63.

Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. Burch, A.D., Weller, S.K. J. Virol. (2005)

64.

Conformation-defective herpes simplex virus 1 glycoprotein B activates the promoter of the grp94 gene that codes for the 94-kD stress protein in the endoplasmic reticulum. Ramakrishnan, M., Tugizov, S., Pereira, L., Lee, A.S. DNA. Cell. Biol. (1995)

65.

Maintenance of endoplasmic reticulum (ER) homeostasis in herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with PERK, a cellular ER stress sensor. Mulvey, M., Arias, C., Mohr, I. J. Virol. (2007)

66.

Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. Taylor, T.J., Knipe, D.M. J. Virol. (2004)

67.

The principal hydrogen donor for the herpes simplex virus type 1-encoded ribonucleotide reductase in infected cells is a cellular thioredoxin. Darling, A.J. J. Gen. Virol. (1988)

68.

[Herpes simplex virus type 1 ICP27 induces apoptotic cell death by increasing intracellular reactive oxygen species]. Kim, J.C., Choi, S.H., Kim, J.K., Kim, Y., Kim, H.J., Im, J.S., Lee, S.Y., Choi, J.M., Lee, H.M., Ahn, J.K. Mol. Biol. (Mosk). (2008)

69.

Herpes simplex virus 1 infected cell protein 0 forms a complex with CIN85 and Cbl and mediates the degradation of EGF receptor from cell surfaces. Liang, Y., Kurakin, A., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (2005)

70.

The infected cell protein 0 of herpes simplex virus 1 dynamically interacts with proteasomes, binds and activates the cdc34 E2 ubiquitin-conjugating enzyme, and possesses in vitro E3 ubiquitin ligase activity. Van Sant, C., Hagglund, R., Lopez, P., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (2001)

71.

Replication-initiator protein (UL9) of the herpes simplex virus 1 binds NFB42 and is degraded via the ubiquitin-proteasome pathway. Eom, C.Y., Lehman, I.R. Proc. Natl. Acad. Sci. U. S. A. (2003)

72.

Herpes simplex virus UL56 interacts with and regulates the Nedd4-family ubiquitin ligase Itch. Ushijima, Y., Luo, C., Kamakura, M., Goshima, F., Kimura, H., Nishiyama, Y. Virol. J. (2010)

73.

A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. Lilley, C.E., Chaurushiya, M.S., Boutell, C., Landry, S., Suh, J., Panier, S., Everett, R.D., Stewart, G.S., Durocher, D., Weitzman, M.D. EMBO. J. (2010)

74.

Herpes simplex virus 1 ICP0 co-localizes with a SUMO-specific protease. Bailey, D., O'Hare, P. J. Gen. Virol. (2002)

75.

Characterization of the novel E3 ubiquitin ligase encoded in exon 3 of herpes simplex virus-1-infected cell protein 0. Hagglund, R., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (2002)

76.

The degradation of promyelocytic leukemia and Sp100 proteins by herpes simplex virus 1 is mediated by the ubiquitin-conjugating enzyme UbcH5a. Gu, H., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (2003)

77.

Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. Boutell, C., Canning, M., Orr, A., Everett, R.D. J. Virol. (2005)

78.

ICP0 enables and monitors the function of D cyclins in herpes simplex virus 1 infected cells. Kalamvoki, M., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (2009)

79.

VP16 and ubiquitin; binding of P-TEFb via its activation domain and ubiquitin facilitates elongation of transcription of target genes. Kurosu, T., Peterlin, B.M. Curr. Biol. (2004)

80.

The role of cdc2 in the expression of herpes simplex virus genes. Advani, S.J., Weichselbaum, R.R., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (2000)

81.

The interaction of herpes simplex virus 1 regulatory protein ICP22 with the cdc25C phosphatase is enabled in vitro by viral protein kinases US3 and UL13. Smith-Donald, B.A., Roizman, B. J. Virol. (2008)

82.

Interwoven Roles of Cyclin D3 and cdk4 Recruited by ICP0 and ICP4 in the Expression of Herpes Simplex Virus Genes. Kalamvoki, M., Roizman, B. J. Virol. (2010)

83.

Role of cdk9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1. Durand, L.O., Roizman, B. J. Virol. (2008)

84.

HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Orvedahl, A., Alexander, D., Tallóczy, Z., Sun, Q., Wei, Y., Zhang, W., Burns, D., Leib, D.A., Levine, B. Cell. Host. Microbe. (2007)

85.

Mechanism of complement inactivation by glycoprotein C of herpes simplex virus. Kostavasili, I., Sahu, A., Friedman, H.M., Eisenberg, R.J., Cohen, G.H., Lambris, J.D. J. Immunol. (1997)

86.

Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. Hazrati, E., Galen, B., Lu, W., Wang, W., Ouyang, Y., Keller, M.J., Lehrer, R.I., Herold, B.C. J. Immunol. (2006)

87.

Inhibition of PACT-mediated activation of PKR by the herpes simplex virus type 1 Us11 protein. Peters, G.A., Khoo, D., Mohr, I., Sen, G.C. J. Virol. (2002)

88.

Herpes simplex virus type 1 targets the MHC class II processing pathway for immune evasion. Neumann, J., Eis-Hübinger, A.M., Koch, N. J. Immunol. (2003)

89.

Glycoprotein B from strain 17 of herpes simplex virus type I contains an invariant chain homologous sequence that binds to MHC class II molecules. Sievers, E., Neumann, J., Raftery, M., SchOnrich, G., Eis-Hübinger, A.M., Koch, N. Immunology. (2002)

90.

Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. Johnson, D.C., Frame, M.C., Ligas, M.W., Cross, A.M., Stow, N.D. J. Virol. (1988)

91.

Neuronal reactivation of herpes simplex virus may involve interleukin-6. Kriesel, J.D., Ricigliano, J., Spruance, S.L., Garza HH, J.r., Hill, J.M. J. Neurovirol. (1997)

92.

Expression of gamma interferon-dependent genes is blocked independently by virion host shutoff RNase and by US3 protein kinase. Liang, L., Roizman, B. J. Virol. (2008)

93.

Cellular localization of the herpes simplex virus ICP0 protein dictates its ability to block IRF3-mediated innate immune responses. Paladino, P., Collins, S.E., Mossman, K.L. PLoS. One. (2010)

94.

Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-beta induction. Melroe, G.T., Silva, L., Schaffer, P.A., Knipe, D.M. Virology. (2007)

95.

Herpes simplex virus requires VP11/12 to induce phosphorylation of the activation loop tyrosine (Y394) of the Src family kinase Lck in T lymphocytes. Wagner, M.J., Smiley, J.R. J. Virol. (2009)

96.

Inhibition of cellular 2'-5' oligoadenylate synthetase by the herpes simplex virus type 1 Us11 protein. Sànchez, R., Mohr, I. J. Virol. (2007)

97.

The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility complex (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. Galocha, B., Hill, A., Barnett, B.C., Dolan, A., Raimondi, A., Cook, R.F., Brunner, J., McGeoch, D.J., Ploegh, H.L. J. Exp. Med. (1997)

98.

Control of TANK-binding kinase 1-mediated signaling by the gamma(1)34.5 protein of herpes simplex virus 1. Verpooten, D., Ma, Y., Hou, S., Yan, Z., He, B. J. Biol. Chem. (2009)

99.

Glycoprotein-dependent and TLR2-independent innate immune recognition of herpes simplex virus-1 by dendritic cells. Reske, A., Pollara, G., Krummenacher, C., Katz, D.R., Chain, B.M. J. Immunol. (2008)

100.

Herpesvirus tegument protein activates NF-kappaB signaling through the TRAF6 adaptor protein. Liu, X., Fitzgerald, K., Kurt-Jones, E., Finberg, R., Knipe, D.M. Proc. Natl. Acad. Sci. U. S. A. (2008)

101.

Herpes simplex virus type 1 ICP27 induces p38 mitogen-activated protein kinase signaling and apoptosis in HeLa cells. Gillis, P.A., Okagaki, L.H., Rice, S.A. J. Virol. (2009)

102.

HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Daubeuf, S., Singh, D., Tan, Y., Liu, H., Federoff, H.J., Bowers, W.J., Tolba, K. Blood. (2009)

103.

Herpes simplex virus ICP27 activation of stress kinases JNK and p38. Hargett, D., McLean, T., Bachenheimer, S.L. J. Virol. (2005)

104.

Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Benetti, L., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (2004)

105.

Purification and characterization of a cellular protein that binds to the downstream activation sequence of the strict late UL38 promoter of herpes simplex virus type 1. Petroski, M.D., Wagner, E.K. J. Virol. (1998)

106.

HSV-1-induced SOCS-1 expression in keratinocytes: use of a SOCS-1 antagonist to block a novel mechanism of viral immune evasion. Frey, K.G., Ahmed, C.M., Dabelic, R., Jager, L.D., Noon-Song, E.N., Haider, S.M., Johnson, H.M., Bigley, N.J. J. Immunol. (2009)

107.

Mitochondrial distribution and function in herpes simplex virus-infected cells. Murata, T., Goshima, F., Daikoku, T., Inagaki-Ohara, K., Takakuwa, H., Kato, K., Nishiyama, Y. J. Gen. Virol. (2000)

108.

High susceptibility of a human oligodendroglial cell line to herpes simplex type 1 infection. Bello-Morales, R., Fedetz, M., Alcina, A., Tabarés, E., López-Guerrero, J.A. J. Neurovirol. (2005)

109.

Herpes simplex virus eliminates host mitochondrial DNA. Saffran, H.A., Pare, J.M., Corcoran, J.A., Weller, S.K., Smiley, J.R. EMBO. Rep. (2007)

110.

The product of the Herpes simplex virus 1 UL7 gene interacts with a mitochondrial protein, adenine nucleotide translocator 2. Tanaka, M., Sata, T., Kawaguchi, Y. Virol. J. (2008)

111.

Human herpesvirus 1 protein US3 induces an inhibition of mitochondrial electron transport. Derakhshan, M., Willcocks, M.M., Salako, M.A., Kass, G.E., Carter, M.J. J. Gen. Virol. (2006)

112.

[Glycolytic metabolites and adenosine triphosphoric acid in the herpes-infected eye]. Terekhina, N.A., Petrovich, I.u.A., Parkhomenko, T.G. Zh. Mikrobiol. Epidemiol. Immunobiol. (1998)

113.

An importin alpha/beta-recognized bipartite nuclear localization signal mediates targeting of the human herpes simplex virus type 1 DNA polymerase catalytic subunit pUL30 to the nucleus. Alvisi, G., Musiani, D., Jans, D.A., Ripalti, A. Biochemistry. (2007)

114.

Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Ojala, P.M., Sodeik, B., Ebersold, M.W., Kutay, U., Helenius, A. Mol. Cell. Biol. (2000)

115.

Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes U(L)31 and U(L)34. Reynolds, A.E., Liang, L., Baines, J.D. J. Virol. (2004)

116.

Effects of lamin A/C, lamin B1, and viral US3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus U(L)34-encoded protein to the inner nuclear membrane. Mou, F., Wills, E.G., Park, R., Baines, J.D. J. Virol. (2008)

117.

Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25. Pasdeloup, D., Blondel, D., Isidro, A.L., Rixon, F.J. J. Virol. (2009)

118.

Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsid-nucleus attachment. Copeland, A.M., Newcomb, W.W., Brown, J.C. J. Virol. (2009)

119.

Egress of HSV-1 capsid requires the interaction of VP26 and a cellular tetraspanin membrane protein. Wang, L., Liu, L., Che, Y., Wang, L., Jiang, L., Dong, C., Zhang, Y., Li, Q. Virol. J. (2010)

120.

Characterization of a CRM1-dependent nuclear export signal in the C terminus of herpes simplex virus type 1 tegument protein UL47. Williams, P., Verhagen, J., Elliott, G. J. Virol. (2008)

121.

Herpes simplex virus 1 alpha regulatory protein ICP0 functionally interacts with cellular transcription factor BMAL1. Kawaguchi, Y., Tanaka, M., Yokoymama, A., Matsuda, G., Kato, K., Kagawa, H., Hirai, K., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (2001)

122.

Herpes simplex virus type I disrupts the ATR-dependent DNA-damage response during lytic infection. Wilkinson, D.E., Weller, S.K. J. Cell. Sci. (2006)

123.

Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes. Everett, R.D., Sourvinos, G., Leiper, C., Clements, J.B., Orr, A. J. Virol. (2004)

124.

Centromeric protein CENP-B proteasomal degradation induced by the viral protein ICP0. Lomonte, P., Morency, E. FEBS. Lett. (2007)

125.

The neuronal host cell factor-binding protein Zhangfei inhibits herpes simplex virus replication. Akhova, O., Bainbridge, M., Misra, V. J. Virol. (2005)

126.

Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein. Morris, J.B., Hofemeister, H., O'Hare, P. J. Virol. (2007)

127.

Characterization of the interaction between the acidic activation domain of VP16 and the RNA polymerase II initiation factor TFIIB. Gupta, R., Emili, A., Pan, G., Xiao, H., Shales, M., Greenblatt, J., Ingles, C.J. Nucleic. Acids. Res. (1996)

128.

NMR structure of the amino-terminal domain from the Tfb1 subunit of TFIIH and characterization of its phosphoinositide and VP16 binding sites. Di Lello, P., Nguyen, B.D., Jones, T.N., Potempa, K., Kobor, M.S., Legault, P., Omichinski, J.G. Biochemistry. (2005)

129.

Binding of hnRNP L to the pre-mRNA processing enhancer of the herpes simplex virus thymidine kinase gene enhances both polyadenylation and nucleocytoplasmic export of intronless mRNAs. Guang, S., Felthauser, A.M., Mertz, J.E. Mol. Cell. Biol. (2005)

130.

The multifunctional herpes simplex virus IE63 protein interacts with heterogeneous ribonucleoprotein K and with casein kinase 2. Wadd, S., Bryant, H., Filhol, O., Scott, J.E., Hsieh, T.Y., Everett, R.D., Clements, J.B. J. Biol. Chem. (1999)

131.

Immediate-early gene product ICP22 inhibits the trans-transcription activating function of P53-mdm-2. Guo, H., Cun, W., Liu, L., Wang, L., Zhao, H., Dong, C., Li, Q. Sci. China. C. Life. Sci. (2007)

132.

A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. Mittler, G., Stühler, T., Santolin, L., Uhlmann, T., Kremmer, E., Lottspeich, F., Berti, L., Meisterernst, M. EMBO. J. (2003)

133.

The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. Johnson, L.A., Li, L., Sandri-Goldin, R.M. J. Virol. (2009)

134.

Herpes simplex virus proteins ICP27 and UL47 associate with polyadenylate-binding protein and control its subcellular distribution. Dobrikova, E., Shveygert, M., Walters, R., Gromeier, M. J. Virol. (2010)

135.

The herpes simplex virus (HSV) protein ICP34.5 is a virion component that forms a DNA-binding complex with proliferating cell nuclear antigen and HSV replication proteins. Harland, J., Dunn, P., Cameron, E., Conner, J., Brown, S.M. J. Neurovirol. (2003)

136.

PML residue lysine 160 is required for the degradation of PML induced by herpes simplex virus type 1 regulatory protein ICP0. Boutell, C., Orr, A., Everett, R.D. J. Virol. (2003)

137.

Interaction of herpes simplex virus 1 origin-binding protein with DNA polymerase alpha. Lee, S.S., Dong, Q., Wang, T.S., Lehman, I.R. Proc. Natl. Acad. Sci. U. S. A. (1995)

138.

Differential role of Sp100 isoforms in interferon-mediated repression of herpes simplex virus type 1 immediate-early protein expression. Negorev, D.G., Vladimirova, O.V., Ivanov, A., Rauscher F, 3.r.d., Maul, G.G. J. Virol. (2006)

139.

Arginine methylation of the ICP27 RGG box regulates the functional interactions of ICP27 with SRPK1 and Aly/REF during herpes simplex virus 1 infection. Souki, S.K., Sandri-Goldin, R.M. J. Virol. (2009)

140.

Herpes simplex virus type 1 tegument protein VP22 interacts with TAF-I proteins and inhibits nucleosome assembly but not regulation of histone acetylation by INHAT. van Leeuwen, H., Okuwaki, M., Hong, R., Chakravarti, D., Nagata, K., O'Hare, P. J. Gen. Virol. (2003)

141.

Multiple hTAF(II)31-binding motifs in the intrinsically unfolded transcriptional activation domain of VP16. Kim, D.H., Lee, S.H., Nam, K.H., Chi, S.W., Chang, I., Han, K.H. BMB. Rep. (2009)

142.

NMR structure of the complex between the Tfb1 subunit of TFIIH and the activation domain of VP16: structural similarities between VP16 and p53. Langlois, C., Mas, C., Di Lello, P., Jenkins, L.M., Legault, P., Omichinski, J.G. J. Am. Chem. Soc. (2008)

143.

Herpes simplex virus 1 activates cdc2 to recruit topoisomerase II alpha for post-DNA synthesis expression of late genes. Advani, S.J., Weichselbaum, R.R., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (2003)

144.

The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and Ubiquitinates p53. Boutell, C., Everett, R.D. J. Biol. Chem. (2003)

145.

Herpes simplex virus 1 induces cytoplasmic accumulation of TIA-1/TIAR and both synthesis and cytoplasmic accumulation of tristetraprolin, two cellular proteins that bind and destabilize AU-rich RNAs. Esclatine, A., Taddeo, B., Roizman, B. J. Virol. (2004)

146.

Reconstitution of uracil DNA glycosylase-initiated base excision repair in herpes simplex virus-1. Bogani, F., Chua, C.N., Boehmer, P.E. J. Biol. Chem. (2009)

147.

Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication. Muylaert, I., Elias, P. J. Biol. Chem. (2007)

148.

A human cellular protein activity (OF-1), which binds herpes simplex virus type 1 origin, contains the Ku70/Ku80 heterodimer. Murata, L.B., Dodson, M.S., Hall, J.D. J. Virol. (2004)

149.

Functional interaction and colocalization of the herpes simplex virus 1 major regulatory protein ICP4 with EAP, a nucleolar-ribosomal protein. Leopardi, R., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (1996)

150.

SR proteins SRp20 and 9G8 contribute to efficient export of herpes simplex virus 1 mRNAs. Escudero-Paunetto, L., Li, L., Hernandez, F.P., Sandri-Goldin, R.M. Virology. (2010)

151.

The downstream activation sequence of the strict late Herpes Simplex Virus Type 1 U(L)38 promoter interacts with hTAF(II)70, a component of TFIID. Petroski, M.D., Devi-Rao, G.B., Rice, M.K., Wagner, E.K. Virus. Genes. (2001)

152.

ATF/CREB elements in the herpes simplex virus type 1 latency-associated transcript promoter interact with members of the ATF/CREB and AP-1 transcription factor families. Millhouse, S., Kenny, J.J., Quinn, P.G., Lee, V., Wigdahl, B. J. Biomed. Sci. (1998)

153.

The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency. Kwiatkowski, D.L., Thompson, H.W., Bloom, D.C. J. Virol. (2009)

154.

CTCF-dependent chromatin boundary element between the latency-associated transcript and ICP0 promoters in the herpes simplex virus type 1 genome. Chen, Q., Lin, L., Smith, S., Huang, J., Berger, S.L., Zhou, J. J. Virol. (2007)

155.

Early growth response gene 1 (Egr-1) regulates HSV-1 ICP4 and ICP22 gene expression. Bedadala, G.R., Pinnoji, R.C., Hsia, S.C. Cell. Res. (2007)

156.

Positive and negative regulation at the herpes simplex virus ICP4 and ICP0 TAATGARAT motifs. Douville, P., Hagmann, M., Georgiev, O., Schaffner, W. Virology. (1995)

157.

Herpes simplex virus disrupts NF-kappaB regulation by blocking its recruitment on the IkappaBalpha promoter and directing the factor on viral genes. Amici, C., Rossi, A., Costanzo, A., Ciafrè, S., Marinari, B., Balsamo, M., Levrero, M., Santoro, M.G. J. Biol. Chem. (2006)

158.

Role of nuclear factor Y in stress-induced activation of the herpes simplex virus type 1 ICP0 promoter. Kushnir, A.S., Davido, D.J., Schaffer, P.A. J. Virol. (2010)

159.

The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein. Kristie, T.M., LeBowitz, J.H., Sharp, P.A. EMBO. J. (1989)

160.

The POU-domain factor Brn-3.0 recognizes characteristic sites in the herpes simplex virus genome. Turner, E.E., Rhee, J.M., Feldman, L.T. Nucleic. Acids. Res. (1997)

161.

Repressor element-1 silencing transcription factor/neuronal restrictive silencer factor (REST/NRSF) can regulate HSV-1 immediate-early transcription via histone modification. Pinnoji, R.C., Bedadala, G.R., George, B., Holland, T.C., Hill, J.M., Hsia, S.C. Virol. J. (2007)

162.

The two functions of herpes simplex virus 1 ICP0, inhibition of silencing by the CoREST/REST/HDAC complex and degradation of PML, are executed in tandem. Gu, H., Roizman, B. J. Virol. (2009)

163.

Cellular transcription factors enhance herpes simplex virus type 1 oriS-dependent DNA replication. Nguyen-Huynh, A.T., Schaffer, P.A. J. Virol. (1998)

164.

STAT1 binds to the herpes simplex virus type 1 latency-associated transcript promoter. Kriesel, J.D., Jones, B.B., Dahms, K.M., Spruance, S.L. J. Neurovirol. (2004)

165.

Cellular protein interactions with herpes simplex virus type 1 oriS. Dabrowski, C.E., Carmillo, P.J., Schaffer, P.A. Mol. Cell. Biol. (1994)

166.

Thyroid hormone controls the gene expression of HSV-1 LAT and ICP0 in neuronal cells. Bedadala, G.R., Pinnoji, R.C., Palem, J.R., Hsia, S.C. Cell. Res. (2010)

167.

Upstream-binding factor is sequestered into herpes simplex virus type 1 replication compartments. Stow, N.D., Evans, V.C., Matthews, D.A. J. Gen. Virol. (2009)

168.

Upstream stimulatory factor family binds to the herpes simplex virus type 1 latency-associated transcript promoter. Kenny, J.J., Millhouse, S., Wotring, M., Wigdahl, B. Virology. (1997)

169.

YY1 is the cellular factor shown previously to bind to regulatory regions of several leaky-late (beta gamma, gamma 1) genes of herpes simplex virus type 1. Mills, L.K., Shi, Y., Millette, R.L. J. Virol. (1994)

170.

Histone H1; a neuronal protein that binds bacterial lipopolysaccharide. Bolton, S.J., Perry, V.H. J. Neurocytol. (1997)

171.

Inhibition of attachment of virions of Norwalk virus to mammalian cells by soluble histone molecules. Tamura, M., Natori, K., Kobayashi, M., Miyamura, T., Takeda, N. Arch. Virol. (2003)

172.

Transcriptional coactivator HCF-1 couples the histone chaperone Asf1b to HSV-1 DNA replication components. Peng, H., Nogueira, M.L., Vogel, J.L., Kristie, T.M. Proc. Natl. Acad. Sci. U. S. A. (2010)

173.

Recruitment of the transcriptional coactivator HCF-1 to viral immediate-early promoters during initiation of reactivation from latency of herpes simplex virus type 1. Whitlow, Z., Kristie, T.M. J. Virol. (2009)

174.

Interactions of the Oct-1 POU subdomains with specific DNA sequences and with the HSV alpha-trans-activator protein. Kristie, T.M., Sharp, P.A. Genes. Dev. (1990)

175.

Linker histones are mobilized during infection with herpes simplex virus type 1. Conn, K.L., Hendzel, M.J., Schang, L.M. J. Virol. (2008)

176.

The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. Placek, B.J., Huang, J., Kent, J.R., Dorsey, J., Rice, L., Fraser, N.W., Berger, S.L. J. Virol. (2009)

177.

Regulation of histone deposition on the herpes simplex virus type 1 genome during lytic infection. Kutluay, S.B., Triezenberg, S.J. J. Virol. (2009)

178.

ICP0 and the US3 protein kinase of herpes simplex virus 1 independently block histone deacetylation to enable gene expression. Poon, A.P., Gu, H., Roizman, B. Proc. Natl. Acad. Sci. U. S. A. (2006)

179.

Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. Lomonte, P., Thomas, J., Texier, P., Caron, C., Khochbin, S., Epstein, A.L. J. Virol. (2004)

180.

High-mobility group protein A1 binds herpes simplex virus gene regulatory sequences and affects their expression. Matta, M.K., Panagiotidis, C.A. Arch. Virol. (2008)

181.

The high mobility group protein 1 is a coactivator of herpes simplex virus ICP4 in vitro. Carrozza, M.J., DeLuca, N. J. Virol. (1998)

182.

The transactivating effect of HSV-1 ICP0 is enhanced by its interaction with the PCAF component of histone acetyltransferase. Li, W., Cun, W., Liu, L., Hong, M., Wang, L., Wang, L., Dong, C., Li, Q. Arch. Virol. (2009)

183.

Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Liang, Y., Vogel, J.L., Narayanan, A., Peng, H., Kristie, T.M. Nat. Med. (2009)

184.

Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation. Yu, J., Shin, B., Park, E.S., Yang, S., Choi, S., Kang, M., Rho, J. Biochem. Biophys. Res. Commun. (2010)

185.

Eukaryotic elongation factor 1delta is hyperphosphorylated by the protein kinase encoded by the U(L)13 gene of herpes simplex virus 1. Kawaguchi, Y., Van Sant, C., Roizman, B. J. Virol. (1998)

186.

Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)34.5 protein. Cheng, G., Feng, Z., He, B. J. Virol. (2005)

187.

Proteomics of herpes simplex virus infected cell protein 27: association with translation initiation factors. Fontaine-Rodriguez, E.C., Taylor, T.J., Olesky, M., Knipe, D.M. Virology. (2004)

188.

Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. Walsh, D., Mohr, I. Genes. Dev. (2004)

189.

Herpes simplex virus virion host shutoff protein is stimulated by translation initiation factors eIF4B and eIF4H. Doepker, R.C., Hsu, W.L., Saffran, H.A., Smiley, J.R. J. Virol. (2004)

190.

The Virion Host Shutoff Endonuclease (UL41) of Herpes Simplex Virus Interacts with the Cellular Cap-Binding Complex eIF4F. Page, H.G., Read, G.S. J. Virol. (2010)

191.

Herpes simplex virus IE63 (ICP27) protein interacts with spliceosome-associated protein 145 and inhibits splicing prior to the first catalytic step. Bryant, H.E., Wadd, S.E., Lamond, A.I., Silverstein, S.J., Clements, J.B. J. Virol. (2001)

192.

Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. Kato, A., Yamamoto, M., Ohno, T., Kodaira, H., Nishiyama, Y., Kawaguchi, Y. J. Virol. (2005)

193.

Herpes simplex virus blocks apoptosis by precluding mitochondrial cytochrome c release independent of caspase activation in infected human epithelial cells. Aubert, M., Pomeranz, L.E., Blaho, J.A. Apoptosis. (2007)

194.

The herpes simplex virus-1 Us3 protein kinase blocks CD8T cell lysis by preventing the cleavage of Bid by granzyme B. Cartier, A., Broberg, E., Komai, T., Henriksson, M., Masucci, M.G. Cell. Death. Differ. (2003)

195.

In transduced cells, the US3 protein kinase of herpes simplex virus 1 precludes activation and induction of apoptosis by transfected procaspase 3. Benetti, L., Roizman, B. J. Virol. (2007)

196.

Herpes simplex virus type 1 (HSV-1)-induced apoptosis in human dendritic cells as a result of downregulation of cellular FLICE-inhibitory protein and reduced expression of HSV-1 antiapoptotic latency-associated transcript sequences. Kather, A., Raftery, M.J., Devi-Rao, G., Lippmann, J., Giese, T., Sandri-Goldin, R.M., Schönrich, G. J. Virol. (2010)

197.

Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. Björck, L., Grubb, A., Kjellén, L. J. Virol. (1990)

198.

A novel cellular protein, p60, interacting with both herpes simplex virus 1 regulatory proteins ICP22 and ICP0 is modified in a cell-type-specific manner and Is recruited to the nucleus after infection. Bruni, R., Fineschi, B., Ogle, W.O., Roizman, B. J. Virol. (1999)

199.

Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Knickelbein, J.E., Khanna, K.M., Yee, M.B., Baty, C.J., Kinchington, P.R., Hendricks, R.L. Science. (2008)

200.

US11 of herpes simplex virus type 1 interacts with HIPK2 and antagonizes HIPK2-induced cell growth arrest. Giraud, S., Diaz-Latoud, C., Hacot, S., Textoris, J., Bourette, R.P., Diaz, J.J. J. Virol. (2004)

201.

Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Gupta, A., Gartner, J.J., Sethupathy, P., Hatzigeorgiou, A.G., Fraser, N.W. Nature. (2006)

202.

Capsaicin-induced reactivation of latent herpes simplex virus type 1 in sensory neurons in culture. Hunsperger, E.A., Wilcox, C.L. J. Gen. Virol. (2003)

203.

Induction of reactivation of herpes simplex virus in murine sensory ganglia in vivo by cadmium. Fawl, R.L., Roizman, B. J. Virol. (1993)

204.

Caspase-3-dependent reactivation of latent herpes simplex virus type 1 in sensory neuronal cultures. Hunsperger, E.A., Wilcox, C.L. J. Neurovirol. (2003)

205.

Heat stress activates production of herpes simplex virus type 1 from quiescently infected neurally differentiated PC12 cells. Danaher, R.J., Jacob, R.J., Chorak, M.D., Freeman, C.S., Miller, C.S. J. Neurovirol. (1999)

206.

Histone deacetylase inhibitors induce reactivation of herpes simplex virus type 1 in a latency-associated transcript-independent manner in neuronal cells. Danaher, R.J., Jacob, R.J., Steiner, M.R., Allen, W.R., Hill, J.M., Miller, C.S. J. Neurovirol. (2005)

207.

Inducible cyclic AMP early repressor produces reactivation of latent herpes simplex virus type 1 in neurons in vitro. Colgin, M.A., Smith, R.L., Wilcox, C.L. J. Virol. (2001)

208.

Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8 T cell response. Sehrawat, S., Reddy, P.B., Rajasagi, N., Suryawanshi, A., Hirashima, M., Rouse, B.T. PLoS. Pathog. (2010)

209.

ICAM-1 is required for resistance to herpes simplex virus type 1 but not interferon-alpha1 transgene efficacy. Noisakran, S., Härle, P., Carr, D.J. Virology. (2001)

210.

Acute morphine administration reduces cell-mediated immunity and induces reactivation of latent herpes simplex virus type 1 in BALB/c mice. Mojadadi, S., Jamali, A., Khansarinejad, B., Soleimanjahi, H., Bamdad, T. Cell. Mol. Immunol. (2009)

211.

Favorable effects of MMP-9 knockdown in murine herpes simplex encephalitis using small interfering RNA. Zhou, Y., Lu, Z.N., Guo, Y.J., Mei, Y.W. Neurol. Res. (2010)

212.

Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro. Wilcox, C.L., Johnson EM, J.r. J. Virol. (1987)

213.

17-beta estradiol promotion of herpes simplex virus type 1 reactivation is estrogen receptor dependent. Vicetti Miguel, R.D., Sheridan, B.S., Harvey, S.A., Schreiner, R.S., Hendricks, R.L., Cherpes, T.L. J. Virol. (2010)

214.

Activation of second-messenger pathways reactivates latent herpes simplex virus in neuronal cultures. Smith, R.L., Pizer, L.I., Johnson EM, J.r., Wilcox, C.L. Virology. (1992)

215.

The role of cyclic nucleotide mediators in latency and reactivation of HSV-1 infected neuroblastoma cells. Rodriguez, A., Sainz De La Maza, M., Missry, J., Foster, C.S. Eye. (Lond). (1991)

216.

Neuronal activity regulates viral replication of herpes simplex virus type 1 in the nervous system. Zhang, C.X., Ofiyai, H., He, M., Bu, X., Wen, Y., Jia, W. J. Neurovirol. (2005)

217.

Ultraviolet light induces reactivation in a murine model of cutaneous herpes simplex virus-1 infection. Goade, D.E., Nofchissey, R.A., Kusewitt, D.F., Hjelle, B., Kreisel, J., Moore, J., Lyons, C.R. Photochem. Photobiol. (2001)

218.

Sunlight is an important causative factor of recurrent herpes simplex. Ichihashi, M., Nagai, H., Matsunaga, K. Cutis. (2004)

219.

Stress-induced glucocorticoids at the earliest stages of herpes simplex virus-1 infection suppress subsequent antiviral immunity, implicating impaired dendritic cell function. Elftman, M.D., Hunzeker, J.T., Mellinger, J.C., Bonneau, R.H., Norbury, C.C., Truckenmiller, M.E. J. Immunol. (2010)

220.

Antiviral effect of arginine against herpes simplex virus type 1. Naito, T., Irie, H., Tsujimoto, K., Ikeda, K., Arakawa, T., Koyama, A.H. Int. J. Mol. Med. (2009)

221.

Antiviral effects of ascorbic and dehydroascorbic acids in vitro. Furuya, A., Uozaki, M., Yamasaki, H., Arakawa, T., Arita, M., Koyama, A.H. Int. J. Mol. Med. (2008)

222.

Inhibition of cyclooxygenase 2 synthesis suppresses Herpes simplex virus type 1 reactivation. Gebhardt, B.M., Varnell, E.D., Kaufman, H.E. J. Ocul. Pharmacol. Ther. (2005)

223.

Acetylsalicylic acid reduces viral shedding induced by thermal stress. Gebhardt, B.M., Varnell, E.D., Kaufman, H.E. Curr. Eye. Res. (2004)

224.

Effect of ibuprofen on the in vitro and in vivo reactivation of latent HSV-1. Cherrick, H.M., Li, K.K., Li, S.L., Park, N.H. Oral. Surg. Oral. Med. Oral. Pathol. (1992)

225.

The effect of indomethacin, prostaglandin E2 and interferon on the multiplication of herpes simplex virus type 1 in human lymphoid cells. Khyatti, M., Menezes, J. Antiviral. Res. (1990)

226.

Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. Decman, V., Kinchington, P.R., Harvey, S.A., Hendricks, R.L. J. Virol. (2005)

227.

Alpha/Beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. Sainz B, J.r., Halford, W.P. J. Virol. (2002)

228.

Interferon-gamma induced type I nitric oxide synthase activity inhibits viral replication in neurons. Komatsu, T., Bi, Z., Reiss, C.S. J. Neuroimmunol. (1996)

229.

Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. Fujioka, N., Akazawa, R., Ohashi, K., Fujii, M., Ikeda, M., Kurimoto, M. J. Virol. (1999)

230.

Potential role for luman, the cellular homologue of herpes simplex virus VP16 (alpha gene trans-inducing factor), in herpesvirus latency. Lu, R., Misra, V. J. Virol. (2000)

231.

Subjective response to lysine in the therapy of herpes simplex. Walsh, D.E., Griffith, R.S., Behforooz, A. J. Antimicrob. Chemother. (1983)

232.

Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro. Wilcox, C.L., Smith, R.L., Freed, C.R., Johnson EM, J.r. J. Neurosci. (1990)

233.

Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. Croen, K.D. J. Clin. Invest. (1993)

234.

S-nitrosylation of viral proteins: molecular bases for antiviral effect of nitric oxide. Colasanti, M., Persichini, T., Venturini, G., Ascenzi, P. IUBMB. Life. (1999)

235.

Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses. MacLean, A., Wei, X.Q., Huang, F.P., Al-Alem, U.A., Chan, W.L., Liew, F.Y. J. Gen. Virol. (1998)

236.

Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. Dodson, A.W., Taylor, T.J., Knipe, D.M., Coen, D.M. Virology. (2007)

237.

Inactivation of herpes simplex virus types 1 and 2 by synthetic histidine peptides. Docherty, J.J., Pollock, J.J. Antimicrob. Agents. Chemother. (1987)

238.

Inhibition of herpes simplex virus replication by retinoic acid. Isaacs, C.E., Kascsak, R., Pullarkat, R.K., Xu, W., Schneidman, K. Antiviral. Res. (1997)

239.

Identification of salivary proteins inhibiting herpes simplex virus 1 replication. Gu, M., Haraszthy, G.G., Collins, A.R., Bergey, E.J. Oral. Microbiol. Immunol. (1995)

240.

Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication. Palamara, A.T., Perno, C.F., Ciriolo, M.R., Dini, L., Balestra, E., D'Agostini, C., Di Francesco, P., Favalli, C., Rotilio, G., Garaci, E. Antiviral. Res. (1995)

241.

The immune response to herpes simplex virus encephalitis in mice is modulated by dietary vitamin E. Sheridan, P.A., Beck, M.A. J. Nutr. (2008)

242.

TNFR1 plays a critical role in the control of severe HSV-1 encephalitis. Vilela, M.C., Lima, G.K., Rodrigues, D.H., Lacerda-Queiroz, N., Mansur, D.S., Miranda, A.S., Rachid, M.A., Kroon, E.G., Vieira, L.Q., Campos, M.A., Teixeira, M.M., Teixeira, A.L. Neurosci. Lett. (2010)

243.

Comparative study on the antiherpetic activity of aqueous and ethanolic extracts derived from Cajanus cajan (L.) Millsp. Zu, Y., Fu, Y., Wang, W., Wu, N., Liu, W., Kong, Y., Schiebel, H.M., Schwarz, G., Schnitzler, P., Reichling, J. Forsch. Komplementmed. (2010)

244.

Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. Tolo, F.M., Rukunga, G.M., Muli, F.W., Njagi, E.N., Njue, W., Kumon, K., Mungai, G.M., Muthaura, C.N., Muli, J.M., Keter, L.K., Oishi, E., Kofi-Tsekpo, M.W. J. Ethnopharmacol. (2006)

245.

Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Kutluay, S.B., Doroghazi, J., Roemer, M.E., Triezenberg, S.J. Virology. (2008)

246.

[Expression, purification and activity determination of cyanovirin-N]. Chen, W., Han, B., Qian, C., Liu, Q., Xiong, S. Sheng. Wu. Gong. Cheng. Xue. Bao. (2010)

247.

In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Tiwari, V., Darmani, N.A., Yue, B.Y., Shukla, D. Phytother. Res. (2009)

248.

Antiviral activity of the marine alga Symphyocladia latiuscula against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice. Park, H.J., Kurokawa, M., Shiraki, K., Nakamura, N., Choi, J.S., Hattori, M. Biol. Pharm. Bull. (2005)

249.

Antiviral effect of pyridinium formate, a novel component of coffee extracts. Tsujimoto, K., Sakuma, C., Uozaki, M., Yamasaki, H., Utsunomiya, H., Oka, K., Koyama, A.H. Int. J. Mol. Med. (2010)

250.

Resveratrol inhibition of herpes simplex virus replication. Docherty, J.J., Fu, M.M., Stiffler, B.S., Limperos, R.J., Pokabla, C.M., DeLucia, A.L. Antiviral. Res. (1999)

251.

Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo. Lipipun, V., Kurokawa, M., Suttisri, R., Taweechotipatr, P., Pramyothin, P., Hattori, M., Shiraki, K. Antiviral. Res. (2003)

252.

Some properties of the adenosine triphosphatase associated with herpes simplex virus and nuclear membrane of host cells. Matis, J., Mucha, V., Matisová, E. Acta. Virol. (1978)

253.

Herpes simplex virus type 1 preferentially targets human colon carcinoma: role of extracellular matrix. Kolodkin-Gal, D., Zamir, G., Edden, Y., Pikarsky, E., Pikarsky, A., Haim, H., Haviv, Y.S., Panet, A. J. Virol. (2008)

254.

Herpes simplex virus 1 regulatory protein ICP22 interacts with a new cell cycle-regulated factor and accumulates in a cell cycle-dependent fashion in infected cells. Bruni, R., Roizman, B. J. Virol. (1998)

255.

Selective internalization of sodium channels in rat dorsal root ganglion neurons infected with herpes simplex virus-1. Storey, N., Latchman, D., Bevan, S. J. Cell. Biol. (2002)

256.

HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling. Hill, J.M., Zhao, Y., Clement, C., Neumann, D.M., Lukiw, W.J. Neuroreport. (2009)

257.

Herpes simplex infections of the nervous system. Baringer, J.R. Neurol. Clin. (2008)

258.

Silica gel is as effective as acyclovir cream in patients with recurrent herpes labialis: results of a randomized, open-label trial. Zschocke, I., Reich, C., Zielke, A., Reitmeier, N., Reich, K. J. Dermatolog. Treat. (2008)

259.

Herpes simplex virus type 1 in Alzheimer's disease: the enemy within. Itzhaki, R.F., Wozniak, M.A. J. Alzheimers. Dis. (2008)

260.

APP, APOE, Complement receptor 1, Clusterin and PICALM and their involvement in the Herpes simplex life-cycle. Carter, C.J. Neurosci. Lett. (2010)

261.

Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis. Armien, A.G., Hu, S., Little, M.R., Robinson, N., Lokensgard, J.R., Low, W.C., Cheeran, M.C. Brain. Pathol. (2010)

262.

[Infectious and inflammatory factors in the etiology and pathogenesis of atherosclerosis]. Andel, M., Tsevegjav, A., Roubalová, K., Hrubá, D., Dlouhý, P., Kraml, P. Vnitr. Lek. (2003)

263.

Infection with herpes simplex virus type 1 is associated with cognitive deficits in bipolar disorder. Dickerson, F.B., Boronow, J.J., Stallings, C., Origoni, A.E., Cole, S., Krivogorsky, B., Yolken, R.H. Biol. Psychiatry. (2004)

264.

An association of herpes simplex virus type 1 infection with type 2 diabetes. Sun, Y., Pei, W., Wu, Y., Yang, Y. Diabetes. Care. (2005)

265.

Molecular evidences for a role of HSV-1 in multiple sclerosis clinical acute attack. Ferrante, P., Mancuso, R., Pagani, E., Guerini, F.R., Calvo, M.G., Saresella, M., Speciale, L., Caputo, D. J. Neurovirol. (2000)

266.

Epidemiology of Parkinson's disease--an overview. Marttila, R.J., Rinne, U.K. J. Neural. Transm. (1981)

267.

Grey matter changes associated with host genetic variation and exposure to Herpes Simplex Virus 1 (HSV1) in first episode schizophrenia. Prasad, K.M., Bamne, M.N., Shirts, B.H., Goradia, D., Mannali, V., Pancholi, K.M., Xue, B., McClain, L., Yolken, R.H., Keshavan, M.S., Nimgaonkar, V.L. Schizophr. Res. (2010)

268.

Apolipoprotein E genotype and hepatitis C, HIV and herpes simplex disease risk: a literature review. Kuhlmann, I., Minihane, A.M., Huebbe, P., Nebel, A., Rimbach, G. Lipids. Health. Dis. (2010)

269.

Complement C4 deficiency and HLA homozygosity in patients with frequent intraoral herpes simplex virus type 1 infections. Seppänen, M., Lokki, M.L., Timonen, T., Lappalainen, M., Jarva, H., Järvinen, A., Sarna, S., Valtonen, V., Meri, S. Clin. Infect. Dis. (2001)

270.

Association between DEFB1 gene haplotype and herpes viruses seroprevalence in children with acute lymphoblastic leukemia. Tesse, R., Santoro, N., Giordano, P., Cardinale, F., De Mattia, D., Armenio, L. Pediatr. Hematol. Oncol. (2009)

271.

Identification of a herpes simplex labialis susceptibility region on human chromosome 21. Hobbs, M.R., Jones, B.B., Otterud, B.E., Leppert, M., Kriesel, J.D. J. Infect. Dis. (2008)

272.

Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. Gao, P.S., Rafaels, N.M., Hand, T., Murray, T., Boguniewicz, M., Hata, T., Schneider, L., Hanifin, J.M., Gallo, R.L., Gao, L., Beaty, T.H., Beck, L.A., Barnes, K.C., Leung, D.Y. J. Allergy. Clin. Immunol. (2009)

273.

HLA-DRB1*01 allele and low plasma immunoglobulin G1 concentration may predispose to herpes-associated recurrent lymphocytic meningitis. Kallio-Laine, K., Seppänen, M., Aittoniemi, J., Kautiainen, H., Seppälä, I., Valtonen, V., Färkkilä, M., Kalso, E., Lokki, M.L. Hum. Immunol. (2010)

274.

IL-10 gene polymorphism and herpesvirus infections. Hurme, M., Haanpää, M., Nurmikko, T., Wang, X.Y., Virta, M., Pessi, T., Kilpinen, S., Hulkkonen, J., Helminen, M. J. Med. Virol. (2003)

275.

Comprehensive evaluation of positional candidates in the IL-18 pathway reveals suggestive associations with schizophrenia and herpes virus seropositivity. Shirts, B.H., Wood, J., Yolken, R.H., Nimgaonkar, V.L. Am. J. Med. Genet. B. Neuropsychiatr. Genet. (2008)

276.

Influence of KIR gene diversity on the course of HSV-1 infection: resistance to the disease is associated with the absence of KIR2DL2 and KIR2DS2. Estefanía, E., Gómez-Lozano, N., Portero, F., de Pablo, R., Solís, R., Sepúlveda, S., Vaquero, M., González, M.A., Suárez, E., Roustán, G., Vilches, C. Tissue. Antigens. (2007)

277.

Polymorphisms in MICB are associated with human herpes virus seropositivity and schizophrenia risk. Shirts, B.H., Kim, J.J., Reich, S., Dickerson, F.B., Yolken, R.H., Devlin, B., Nimgaonkar, V.L. Schizophr. Res. (2007)

278.

Lactoferrin Glu561Asp polymorphism is associated with susceptibility to herpes simplex keratitis. Keijser, S., Jager, M.J., Dogterom-Ballering, H.C., Schoonderwoerd, D.T., de Keizer, R.J., Krose, C.J., Houwing-Duistermaat, J.J., van der Plas, M.J., van Dissel, J.T., Nibbering, P.H. Exp. Eye. Res. (2008)