.......... ...........

Enhanced links to genes are provided by

Relationships between schizophrenia susceptibility genes and certain of the pathogens implicated in the disease

Many of the genes implicated in schizophrenia are also involved in the life-cycles of the pathogens implicated in the disease. These table sumarise some of these interactions.

For further details, see:-  Carter C.J. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: Cytomegalovirus, Influenza, Herpes simplex, Rubella, and T.Gondii. Schiz Bull, in press

 

Pathogen

Genes implicated in life cycle, affecting, or affected by pathogen
Influenza
ACE, AGA, AKT1, CALR, CCR5, CHN2, CTLA4, DLG2, EGR2, ENTH, ERBB4, FOXP2, GAD1, GALNT7, GCLC, GCLM, GRIN2B, GSTM1, 
GSTT1, HLA-B, HLA-DRB1, HOMER1, hsa-mir-198, HSPA1B, IL10, IL18, IL1B, IL1RN, IL2, IL4, KPNA3, LTA, MDR1,MICB, NOS1, PI4KA, 
PIK3C3, PIP5K2A, PLA2G4A, PLA2G4B, PLA2G4C, PLP1, PNPO, PTGS2, RANBP5, RELN, RGS4, SOD2,ST8SIA2, TNF, TPP2, ZNF74

Cytomegalovirus

AKT1, ATF4, B3GAT1, CALR, EGF, EGFR, GCLC, GCLM, GRIN1, GSTM1, GSTT1, HLA-B , HLA-DRB1, HSPA1B, HSPA1L, IL10 ,IL10RA,IL12, IL12B , IL18 , IL18R1, IL18RAP, IL1B, IL1RN, IL2, IL4, KPNA3, LTA, MAG, MICB, MOG, NCAM1, PLA2G4A, PLA2G4B,  PLA2G4C, PTGS2.RANBP5, ST8SIA2, TH, TNF, TP53, TPH, TYR, XBP1, ZNF74

HSV-1

ADCYAP1, AKT1, APC, APOE, ATF4, CALR, CCR5, CHRNA7, CNP, CTLA4, EGR2, ERBB2, FGFR1, FYN, GALNT7, GCLC, GCLM, GNAS, GRIN1, GRIN2A, GRIN2B, GRIN2D, GSTM1, GSTT1, HLA-B, HOMER1, HTR2A, IL10, IL12, IL18, IL18RAP, IL1B, IL1RN, IL2, IL4, KPNB3, LTA, MED12, MICB, NOS1, NPY, NTF3, PCQAP, PICK1, PIK3C3, PLP1, PTGS2, SLC1A2, ST8SIA2, TH, TNF, TP53, TYR, ZNF74

Rubella

AGA, AKT1, ATXN1, CALR, CHI3L1, EGFR, EGR3, ENTH, ERBB2, GAD1, GRM3, HLA-A, HLA-B, HLA-DRB1, HOMER1, hsa-mir-198,IL10, MOG, NRG1, PDE4B, PLA2G4A, PLA2G4B, PLA2G4C, PLP1, PLXNA2, PRODH, PTGS2, RBP1, RGS4, SOD2, TP53

B.Burgdorferi

In progress

T.Gondii

ACE, AKT1, CCR5, CTLA4, DRD2, GCLC, GCLM, GNPAT, GSTM1, GSTT1, HLA-B,  HLADRB1, HP, HSPA1B, IL10, IL12, IL1B, IL2, IL3,IL4, LTA, MDR1, NCAM1, NOS1, NQO2, NRG2, PAX6, PDE4B, PIK3C3, PNPO, PTGS2, SLC6A3, SOD2, ST8SIA2, TF, TNF, TPH1, UCP2.YWHAH

Pathogen receptors: Pathogens bind to cell surface constituents (sialic acids, phospholipids etc) or to

specific receptorswhich are then internalised using the endocytic pathway

Gene

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

AGA
aspartylglucosaminidase

N-glycan degradation N4-(beta-N-acetyl-D-glucosaminyl)-L-asparagine + H2O =
N-acetyl-beta-D-glucosaminylamine + L-aspartate

Influenza virus infection of CHO cells is redced by N-glycan degradation  suggesting that an N-linked glycoprotein is necessary for entry into cells. This enzyme has not been specifically examined 1

NF

NF

Beta-N-acetylglucoseamine residues may contribute to a complex Rubella receptor in Vero cells 2,2 

The surface of Borrelia burgdorferi is also coated with N-acetyl-D-glucosamine or galactoseamine residues 3

NF

B3GAT1 beta-1,3-glucuronyltransferase 1

(Synthesises HNK-1)

 

NF

CMV binds to sulfated glucuronyl glycosphingolipids (B3GAT1 plays a role in their synthesis). An HNK-1 antibody inhibits the pathogenic effects (plaque formation) of CMV 4

NF

NF

NF

NF

GALNT7
 
O-glycan biosynthesis

UDP-N-acetyl-D-galactosamine + polypeptide = UDP +
N-acetyl-D-galactosaminyl-polypeptide

Acetylated galactosamine is a receptor for the influenza C virus glycoprotein 5

NF

Glycoprotein C of the Herpes virus accquires N-acetylgalactosamine prior to routing to the host golgi apparatus 6

NF

The surface of Borrelia is coated with host-derived glycoconjugates containing O-glycosidically linked N-acetyl-D-galactosamine (GalNAc) and N-glycosidically linked N-acetyl-D-glucosamine (GlcNAc) 3,3.

T. gondii Glycosyl-phosphatidylinositols with a glucose-N-acetylgalactosamine side branch are immunogenic in humans.  This  structure is widely distributed among T. gondii isolates 7.

ST8SIA2   (SIAT8B) ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2

Glycan biosynthesis and metabolism: Ganglioside biosynythesis

Alpha-2-6 and alpha-2-3-linked   sialic acids are the predominant receptors for the Hemagglutinin molecule 8.Alpha-2-8 linked sialic acid binding has also been observed 9

CMV binds to sialic acids and infectivity is reduced by sialidase.  Specific isoforms have not been examined 10.

Sialic acid residues bind to envelope  glycoproteins of HSV-1. Sialic acid is required for viral entry 11. SIAT8B not specifically examined

NF

NF

Sialic acid residues on the host cell surface are important for parasitic entry. 12. Alpha-2-3, 2-6 and 2-8 sialylated residues are preferred for the binding of the T.Gondii micronemal protein MIC113

EGF

Epidermal growth factor

NF

The EGF receptor is used by the virus for entry and EGFR/ERBB3 heterodimers bind glycobrotein B of the virus 14 . EGF infusion in mice increases cerebral infectivity in adult mice 15

NF

Rubella infection causes a decrease in reponsiveness of  human embryonic mesenchymal cells to EGF 16

NF

NF

EGFR

NF

The EGF receptor is used by the virus for entry and EGFR/ERBB3 heterodimers bind glycobrotein B of the virus 14

ICP0, an HSV-1 protein forms a complex with CIN85 and CBL and increases degradation of the EGF receptor 17 As the ubiquitin ligase CBL also regulates the degradatuion of ERBB tyrosine kinases 18, this mechanism may be more general .  

Expression increased by rubella infection of  human embryo fibroblasts Adamo et al, 2008

NF

NF

FGFR1

NF

NF

Receptor for HSV-1 19

NF

NF

NF

IL10RA Interleukin 10 receptor

NF

CMV homolog of IL10 binds to IL10RA20

NF

NF

NF

NF

IMPA2 inositol(myo)-1(or 4)-monophosphatase 2

NF

NF

NF

Several phospholipids (phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, phosphatidylcholine, sphingomyelin) and glycolipids (gangliosides, lactosylceramide, cerebroside sulphate) are able to neutralise infection of Vero cells,  suggesting a complex lipid moiety in the cell surface receptor for the virus

NF

NF

PLA2G4A (B and C)

phospholipase A2, group IVA (Cytosolic, calcium-dependent)

Infection increases cytosolic phospholipase A2 phosphorylation in epithelial cells 21.

Cytomegalovirus infection of smooth muscle or LU cells increases cytosolic PLA2 activity 22,23 . The virus also adsorbs host cytosolic PLA2.  PLA2 inhibitors do not affect cell entry but decrease the expression of cellular viral proteins 24

NF

The rubella virus is believed to bind to membrane phospholipds and glycolipids Phospholipase A2  digestion of Vero cells cells markedly reduces viral infectivity.  2. Expression of PLA2G4A increased by rubella infection of  human adult fibroblasts Adamo et al, 2008

NF

T.Gondii possesses calcium-dependent and independent phospholipase A2 which play a role in cell penetration25,26 . Host phospholipase A2 is also activated by the parasite in macrophages 27 . PLA2 inhibitors reduce T.Gondii infection of  THP1 monocytic cells 28.

PSAP Prosaposin

NF

NF

NF

NF

Saposins activate the degradation of galactosylceramide in cells 29. B.Burgdorferi binds to galactosylceramide 30

NF

Adhesion molecules, extracellular matrix,  junctions and related

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

ARVCF armadillo repeat gene deleted in velocardiofacial syndrome

NF

NF

ARVCF is a component of adherens junctions  31,32which play an important role in the invasion of several viruses including Herpes simplex 33,  Hepatitis B 34, Coxsackie and group C adenoviruses35.

NF

NF

NF

CHI3L1 chitinase 3-like 1 (cartilage glycoprotein-39) Alias : GP39, HC-gp39, HCGP-3P, YKL40, YYL-40

NF : Enhances bacterial adhesion and invasion in colonic epithelial cells 36

NF

NF

Expression increased by rubella infection of  human adult fibroblasts Adamo et al, 2008

NF

NF

CLDN5 Claudin 5 Tight junction protein involved in blood-brain barrier regulation

NF:Other claudins (1,6 and 9) function as entry receptors for hepatitis C 37,38.

NF

NF

NF

NF

NF

CNTNAP2 Contactin associated protein-like 2

NF

NF

NF

 

NF

NF

GJA8 gap junction protein, alpha 8, 50kDa connexin 50

NF

NF

Gap junctions can play a role in herpes transfer between epithelial cells 39. This particular form has not been studied.

NF

NF

NF

NPTN neuroplastin

NF

NF

NF

NF

NF

NF

CHL1 cell adhesion molecule with homology to L1CAM (close homolog of L1)

NF

NF

NF

NF

NF

NF

CHN2 Chimerin (chimaerin) 2

Upregulated in neocortex at postnatal days 35/36 following prenatal influemza infection in mice40

NF

NF

NF

NF

NF

NCAM1 Neural cell adhesion molecule 1

NF

Infection downregulates expression in neuroblastoma cells 41

NF (but receptor for rabies virus)42

NF

Expression downregulated by infection of synovial cells 43. B.Burgdorferi possesses receptors for host plasminogen, which, once bound to the spirochete is converted to active plasmin by the host plasminogen activator uPa (PLAU).  Plasmin-coated borrelia degrades components of the extracellular matrix (fibronectin, lamininin, and vitronectin) and this system is used by the parasite to gain entry to cells 44.  In the brain, relevant substrates for Plasmin include phosphacan (PTPRZ1) 45(a tyrosine phosphatase implicated in NRG1/ERBB4 signaling) 46and the adhesion molecule NCAM1 47. Plasmin also converts pro-BDNF to BDNF 48

Adhesion molecules play an important role in cell entry

TNXB: tenascin XB

NF

NF

NF

NF

NF

NF

Traffic

Gene

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

CALR Calreticulin

Involved in the folding of influenza proteins 49,50

Glycoprotein B of HSV-1 or cytomegalovirus binds to calreticulin which is involved in the folding of viral proteins 51

Glycoprotein B of HSV-1 or cytomegalovirus binds to calreticulin which is involved in the folding of viral proteins 51,52

Rubella glycoproteins E1 and E2 bind to calreticulin 53

NF

NF

DTNBP1 Dysbindin

Many pathogens exploit the trafficking networks used by the cell to obtain nutrients, or to endoctose membrane receptors.  These endosomal and other pathways converge on lysozymes, which are able to kill pathogens 54.  Although dysbindin (DTNBP1), BLOC1S3 or MUTED have not been specifically implicated in viral traffic, they are part of the biogenesis of lysosomal organelles complex (BLOC-1) which is specifically involved in the sorting of cargoes from vacuolar early endosomes to the lysosomal complex 55The BLOC-1 complex is also involved in the transport of melanosome constituents from endosomes to melanosomes. The Varicella Zoster virus is believed to follow this route during infection of melanocytes 56.

NF

NF

BLOC1S3  biogenesis of lysosome-related organelles complex-1, subunit 3

-

-

MUTED Muted homolog

-

-

ENTH Epsin 4

Involved in clathrin-mediated endocytosis 57 an entry strategy used by Cytomegalovirus 58, Herpes simplex  59, Influenza 60and Rubella 61

NF

NF

DISC1 Disrupted in schizophrenia 1

Viruses use the microtubule network to gain access to the nucleus and are driven along by the host’s dynein and kinesin motors towards the microtubule organising centre close to the nucleus 62Viral inclusions, factories for viral replication, form at pericentriolar sites close to this microtubule organizing center or in specialized nuclear domains known as ND10/PML bodies 63. DISC1 is a component of this microtubule-related dynein motor complex 64 and implicated in centriolar function via its association with kendrin, a binding partner of PCN1 65  A number of DISC1 binding partners 66are involved in viral life cycles.  For example FEZ1 binds to the JC virus agnoprotein 67, citron kinase (CIT) binds to the P90 protein of the rubella virus 68, while TUBB2A binds to the influenza virus ribonucleoprotein complex69.

NF

NF

FEZ1

NF Binds to agnoprotein of human polyomavirus JC virus (JCV) (causes demyelinating disease) 67

NF

NF

NF

NF

NF

PCM1
pericentriolar material 1

NF : viral inclusions, factories for viral replication form at pericentriolar sites close to the microtubule organizing center or in specialized nuclear domains known as ND10/PML bodies 63.

NF

NF

KPNA3   karyopherin alpha 3 (importin alpha 4)

Nuclear transport: Involved in the nuclear import of Influenza viral nucleoprotein 70

The  importin alpha/beta pathway is reqired for nuclear import of the virus, a component of which UL84) binds to KPNA1,4 and 5 and IPO171

NF

NF

NF

NF

KPNB3 (RANBP5)

Nuclear transport : Important role in the nuclear import of Influenza viral RNA polymerase 72

See above

Beta importins play an important role in the binding of HSV-1 capsids to the nuclear membrane 73

NF

NF

NF

KIF2A
kinesin heavy chain member 2A

Kinesins transport viruses along microtubules including influenza components (role of KIFC3 demonstrated) 74

NF

Kinesins transport HSV-1 along microtubules to the nucleus 75. Viral proteins bind to KIF1A 76 and uKHC kinesin heavy chain 77. KIF2A not specifically examined

NF

NF

NF

NDE1 LIS1-interacting protein NUDE1

NF

NF

NF

NF

NF

NF

PIK3C2G phosphoinositide-3-kinase, class 2, gamma polypeptide

NF

NF

NF

NF

NF

NF

PIK3C3 phosphoinositide-3-kinase, class 3 (vps34)

This particular PI kinase vps34 is involved specifically in the vacuolar protein sorting pathway which is one used by the virus to gain entry to cells. Transfection of a dominant-negative PIK3C3 blocks virus particles in endosomes 78.

NF

Down regulated by HSV-1 infection of rat fibroblasts 79

NF

NF

The parasite survives in macrophages in vacuoles that avoid fusion with lysosomes. Activation of the immune response can reroute these vacuoles to the lysosomal system allowing macrophage bactericidal activity. VPS34 plays a key role in this vacuolar/lysosomal fusion and in enabling macrophages to kill T.gondii 80

PI4KA phosphatidylinositol 4-kinase, catalytic, alpha

Involved in the transport of influenza hemagglutinin from the trans-Golgi network (TGN)-to-cell surface 81

NF

NF

NF

NF

NF

PIP5K2A

phosphatidylinositol-4-phosphate 5-kinase, type II, alpha

The Influenza M2 proton channel possesses a phosphatidylinositol 4,5-bisphosphate-binding motif.82. PI5 kinases are involved in the intracellular transport of viral hemaglutinin83. This isoform was not specifically examined.

NF

NF

NF

NF

Upregulated by T.Gondii infection of porcine epithelial cells 84

MAP6
Microtubule-associated protein 6

Binds to microtubule components including TUBB2A, a binding partner of the influenza viral ribonucleoprotein complex and polymerase complex 69

The microtubule network is used to transport the virus to the nucleus 85

HSV-1 uses microtubules to travel beween the plasma membrane and  the nucleus. MAP6 not specifically examined 86,87

Microtubule-disrupting drugs inhibit rubella entry to vero cells 61

NF

T.Gondii forms a vacuole within the host cell, to which it recruits host microtubules. This results in sequestretaion of endo-lysosomes within the vacuole . The lysosomal degradation products may serve as nutrients for the parasite 88

TUBA8 tubulin, alpha 8

NF

Microtubules are affected by CMV  89,90but no specific interactions with this form have been reported.

HSV-1 uses the microtubule network to migrate from the plasma membrane to the nucleus. Interactions with this particular isoform not reported 91,92.

NF

NF

Host microtubules are affected by parasitic infection and concentrate around the parasitic intracellular vacoule. Specific interactions not identified93.

HSPA1B HSP70-2

Cellular  partner of the influenza virus ribonucleoprotein and polymerase complex 69

CMV Glycoprotein b binds to grp78/Bip (HSPA5) and grp94 (HSP90B1)94. CMV IE2 protein binds to the promoter of hsp70’s including HSPA1A/HSPA1B and HSPA1L 95.

NF

NF

Borrelia genes encode for a number of heat shock proteins . Molecular mimicry has been observed for  bHSP60 96but not for other ~70kD species 97.

T.gondii produces its own HSP70 98,99. Autoantibodies can cross react with murine HSP70 producing anaphylactic reaction 100,101 

HSPA1L

 

CMV Glycoprotein b binds to grp78/Bip (HSPA5) and grp94 (HSP90B1)94. CMV IE2 protein binds to the promoter of hsp70’s including HSPA1A/HSPA1B and HSPA1L 95.

       

UFD1L

ubiquitin fusion degradation 1 like

NF

UFD1L associates with NPLOC4 and Valosin containing protein VCP (aka cdc48): This complex plays a key role in endoplasmic reticulum associated protein  degradation 102.  A cytomegalovirus protein (US2) assistes in the degradation of MHC class 1 and II proteins via this route by recruiting VCP to ER-associated degradation complexes 103.

NF

NF

NF

Upregulated by infection of porcine epithelial cells 84

XBP1

X-box binding protein 1.

NF: General: Subjugation of the host’s protein folding machinery by viral polypeptides leads to endoplasmic reticulum stress 60ATF6 and XBP1 play a key role in this pathway

Cytomegalovirus infection of fibroblasts induces the unfolded protein reponse characterised by increased splicing of XBP1. Mediated via the CMV protein US11. This enables US11 to divert class I major histocompatibility complex (MHC) heavy chains (HC) from the endoplasmic reticulum (ER) to the cytosol where thay are degraded by the proteasome 104.

NF

NF

NF

NF

Nutrition

Gene

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

GNPAT glyceronephosphate O-acyltransferase

NF

NF

NF

NF

Spirochetes forage phospholipids in the blood. They contain and enzyme (GpsA) that metabolises dihydroxyacetone phosphate (glycerone-3-phospate) to glycerol-3-phosphate  that may be used as an energy source by the parasite. GNPAT metabolises glycerone-3-phospate to  acylglyceronephosphate.105

NF

TPH1 Tryptophan hydroxylase

NF

Lack of tryptophan blocks cytomegalovirus replication 106

NF

NF

NF

Tryptophan is required for T.Gondii growth and the organism displays auxotrophy for tryptophan 107,108

 
Viral transcription

RNA polymerase and transcription

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

MED12 mediator of RNA polymerase II transcription, (HOPA) 

NF

NF

The multiprotein Mediator complex is a coactivator required for transcriptional activation of RNA polymerase II transcribed genes by DNA binding transcription factors. This complex is used by Herpes simplex which diverts the host RNA polymerase towards viral RNA synthesis, A viral protein VP16 binds to components of the mediator complex (MED 17 and 25109

NF

NF

NF

PCQAP (ARC105) MED15 may Transcriptional coactivator in RNA polymerase II transcription

NF

NF

Binds to the herpes viral protein VP16110

NF

NF

NF

ZNF74

zinc finger protein 74 (Cos52) ZNF74 binds to hyper- but not hypo-phosphorylated RNA polymerase II (POL2RA)111

RNA polymerase II is recruited by the virus for transcription112

Cytomegalovirus induces hyperphosphorylation of RNA polymerase II. Mediated by a viral kinase (UL97) 113,114 A further viral protein (IE86) blocks assembly of RNA polymerase with the preinitiation complex 115. ZNF74 Binds to hyper- but not hypo-phosphorylated RNA polymerase II (POL2RA)111

RNA polymerase II is recruited by Herpes simplex to transcribe viral genes 116. It is phosphorylated by a complex of CDK9 and a viral protein (ICP22)117

NF

NF

NF

PNPO

Pyridoxal 5 phosphate (Vitamin B6) , a product of this enzyme inhibits the influenza virus transcriptase 118

NF

NF

NF

NF

Protein downregulated by T.Gondii fibroblast infection 119

Viral DNA/RNA Methylation

Gene

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

MTR 5-methyltetrahydrofolate-homocysteine methyltransferase

5-methyltetrahydrofolate + L-homocysteine = tetrahydrofolate +
L-methionine

Viral RNA methylation, using the methyl donor S-adenosylmethionine is crucial for the maturaton of viral RNA (See Declerq 120).  The product of these methylation reactions, S-adenosylhomocysteine inhibits the diverse methyltransferases involved in this process120.  S-adenosylhomocysteine (SAH) is normally rapidly metabolised to adenosine and homocysteine by SAH hydrolase (ADCY) and inhibitors of this enzyme inhibit viral RNA methylation by favouring SAH accumulation.  SAH hydrolase inhibitors display broad-spectrum antiviral activity 120.  Methyltransferase inhibitors also inhibit influenza viral replication 121 and methylation inhibition also results in the increased nuclear retention of influenza viral RNA 122. Methylation of viral DNA or proteins also plays a role in the viral life cycles.  For example, HSV-1 latency or lytic infection can be influenced by such reactions 123

The availability of S-adenosylmethionine is thus a general factor contributing to viral viability.  One might also expect that methylation of viral RNA would be a competing factor for the methylation of host DNA or proteins, depending on the compartment in which this occurs. 

Viruses also affect the methylation of host DNA.  For example the herpes simplex strain HSV-2 produces marked hypomethylation of host DNA in infected rat embryo cells, although this effect may be due to a redistribution of the host DNA methyltransferase rather than to any diversion of methionine/homocysteine metabolism towards viral methylation 124. A generalised decrease in DNA methylation has been observed in leukocytes isolated from male schizophrenic patients 125. Several genes implicated in schizophrenia (MTHFR, MTR and MTHFD1) are relevant to this area . Other methylating enzymes may also influence this cycle indirectly by modifying substrate levels.  For example, phosphatidylethanolamine methyltransferase (PEMT) knockout mice have dramatically reduced plasma homocysteine levels 126and COMT inhibition increases S-adenosylmethionine levels in the rat brain 127.

NF

NF

MTHFD1 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1, methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthetase Multifunctional folate metabolism enzyme catalyzing reactions of 1.5.1.5, 1.5.1.15, 3.5.4.9 and 6.3.4.3

   

MTHFR

Methylenetetrahydrofolate reductase

5-methyltetrahydrofolate + NAD(P)+ = 5,10-methylenetetrahydrofolate+ NAD(P)H + H+

NF

 

PEMT phosphatidylethanolamine N-methyltransferase

NF

NF

NF

NF

NF

NF

COMT Catechol-O-methyltransferase

NF

NF

NF

NF

NF

NF

Growth factor signaling: Pathogens may at different stages of their life cycle either inhibit PI3K/AKT signaling resulting in apoptosis, and release of the pathogen, or stimulate this survival pathway, enabling them to stay in residence Apoptosis, Cell Signaling, And Human Diseases: Molecular Mechanisms By Rakesh Srivastava

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

ALK (anaplastic lymphoma kinase) pleiotrophin receptor  

NF

NF

NF

NF

NF

NF

AKT1 v-akt murine thymoma viral oncogene homolog 1

The NS1 viral protein binds to the p85 beta subunit of phosphoinositide kinase (PIK3R2) and activates AKT1 signalling. These effects limit the viral-induced cell death programme allowing further replication  290,291

Rapidly activated by CMV infection of  astroglial and fibroblast cells 292. Used to counter apoptosis 293.

Activated by infection 294.

Activated by Rubella infection of  RK13 cells 295

NF

Activated by T.Gondii infection as part of an anti-apoptotic programme for self-presevation 296

BDNF brain derived neurotrophic factor

NF

Undifferentiated human neural precursor cells support replication of the virus. This property is maintained by treatment favouring the development of the astroglial cell type, but lost by differentiation of the cells to a neuronal cell-type by treatment with BDNF and PDGF 297

NF

NF

NF

NF

FYN FYN oncogene related to SRC, FGR, YES

NF

NF

The ICP0 protein of  HSV-1 binds to FYN and other SRC kinases  (src, yes, fgr) 298

NF

NF

NF

FGF1

NF

NF

NF

NF

NF

NF

GFRA1
GDNF family receptor alpha 1

NF

NF

GDNF and NTF3 expresion increased by HSV-1 encephalitis in mice 299

NF

NF

NF

NRG1 Neuregulin 1

EBP1 (PA2G4), an ERBB3 binding partner ,dissociates from this receptor and translocates to the nucleus following NRG1 stimulation 300. EBP1 inhibits the influenza virus transcriptase 301

NF

NF

Expression increased by rubella infection of  human adult fibroblasts Adamo et al, 2008

NF

NF

NRG2

NF

NF

NF

NF

NF

Upregulated by infection of human fibroblasts 288

NRG3
Neuregulin 3

NF

NF

NF

NF

NF

NF

ERBB2

NF

NF

Expression increased by HSV-1 infection of trigeminal ganglia in mice 302

Expression reduced by rubella infection of  human adult fibroblasts Adamo et al, 2008

NF

NF

ERBB4 Neuregulin receptor

Upregulated in the hippocampus postnatally following prenatal infection in mice 256

NF

NF

NF

NF

NF

NTF3 neurotrophin 3

NF

NF

Expresion upregulated by Herpes simplex infection (along with GDNF) 299

NF

NF

NF

Innate Immune system: By definition involved in pathogen defense

Gene

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

CCR5 delta32 deletion (late onset)

CCR5 defficicient mica show increased mortality to Influenza infection 128

CCR5 polymorphisms modify CMV infection in man 129 .Downregulated in immature dendritic cells by CMV infection 130 and in monocytes 131

Expression induced by HSV-1 corneal infection 132. Occular infection increased in CCR5 defficient mice. 133

NF

Increased expression in CSF T-calls in neuroborreliosis 134

Binds to a cyclophilin-like protein 9C18) secreted by T.Gondii 135. The delta32 deletion protects against toxoplasmosis in HIV+ve patients 136 

CSF2RA colony stimulating factor 2 receptor, alpha,

low-affinity (granulocyte-macrophage)

Pretreatment of human monocytes with GMCSF enhances viral protein production and increases viral release and cytotoxicity. Synergistic activation of TNF, IL1B, and IL-6 by the virus and GMCSF may however potentiate the beneficial effects of cytokines on infection 138

Cytomegalovirus infection produces a profound depletion of GMCSF or GCSF in HUVEC cells, vascular endothelial cells or bone marrow stromal cells. Such myelosuppression may plat an important role in circumventing host defense 139,140,141

Systemic recombinant GMCSF protects mice againsts HSV1 infection 142

GMCSF is induced by rubella infection of fibroblasts 143

Infection stimulates GMCSF production in human monocytes 144 and dendritic cells 145. Phagocytosis of the spirochete by monocytes is enhanced by GMCSF 146. Serum levels of GMCSF are increased in infected patients 147.

Toxoplasma infection of astroglia releases IL1A, IL-6, and granulocyte/macrophage colony-stimulating factor (GM-CSF) . 148. GM-CSF and granulocyte colony-stimulating factor are secreted by T.Gondii infected fibroblasts and delay neutrophil apoptosis 149. TNF + GMCSF limit T.Gondii multiplication in HUVEC cells 150. Covaccination with plasmids coding for antigens specific for T.Gondii  and a plasmid containing GMCF provides effective protection against infection in mice 151

CSF2RB

See above

See above

See above

See above

See above

See above

CTLA4 cytotoxic T-lymphocyte-associated protein 4

CTLA4-positive T-cells are elevated by influenza infection, particularly in influenza-related encephalopathy. As CTLA4 represses the T-cell mediated antigen-activated immune response this effect may play a permissive role in infection152

NF

CTLA4 immunoglobulin treatment reduces survival in HSV-1 infected mice, an effect related to inhibition of the anti-HSV CD4(+) and CD8(+) T-cell responses and a reduction in T-cell number 153

NF

CD4(+) CTLA-4(+) regulatory T cells are increased in early Lyme disease (Borreliosis)154

Administration of CTLA4-Immunoglobulin  to SCID mice infected with T. gondii increases parasite burden 155.

EGR2 EGR proteins (EGR2,3,4) are induced in T-cells following antigen stimulation where they control the

expression of cytokine , growth and apoptosis related genes 156.

Downregulated in neocortex at postnatal days 35 following prenatal influemza infection in mice 40

NF

Binds to HCFC1 a  transcriptional cofactor required for activation of herpes simplex virus immediate-early genes by the viral protein VP16 157

NF

NF

NF

EGR3 early growth response 3

Negative regulator of T-cell activation 158

NF

NF

Expression increased by rubella infection of  human adult fibroblasts Adamo et al, 2008

NF

NF

EGR4 early growth response 4

See above

NF

NF

NF

NF

NF

IL1B Interleukin 1B

Cytokines including IL1B, TNF,  are commonly produced at the sites of influenza infection 159. IL1B may not be directly involved in viricidal effects but may enhance recovery by recruiting T-cells to the site of infection 160

Infection increases production and release in monocytes 161 a cmv PROTEIN (IE2) binds to the IL1B promoter 162

Induced in brain by HSV encephalitis 163. TNF and IL1B induced by infection of murine microglia 164 CMV can be reactivated by IL4 and other cytokines in myeloid cells 165. TNF, IL1B and IL4 can activate the CMV intermediate gene promoter 166

NF

Secreted in response to infection of human peripheral blood mononuclear cells.167

Induced by infection of neurones with T.Gondii 168. IL1B inhibits T.Gondii growth and replication in vascular endiothelial and HUVEC cells 169,170. Systemically administed IL1B or TNF protect mice against T.Gondii infection 171

IL1RN

Interleukin 1 receptor antagonist

Systemic injection or recombinant IL1RN increases survival following influenza infection in mice 172

IL1RN (variable numbers of 86-bp repeats in intron 2) and TNF polymorphisms (base exchange polymorphism at position -308) modify Cytomegalovirus infectivity 173. CMV gene products IE1 downregulates while IE2 upregulates expression 174

Protects against herpes stromal  keratitis 175,176

NF

Secreted in response to infection of human peripheral blood mononuclear cells, although in lesser quantity than IL1B 167. Reduced Borrelia induced produxtion of IL8 in human peripheral blood mononuclear cells 177.

NF

IL2: Interleukin 2

NF. Infection of mouse splenocytes reduces IL2 production and natural killer cell activity 178.

A cytomegaloviirus  intermediate early genes (IE2) activates the IL2 and IL2R promoter and increases their expression. IE2 also attenuates the suppressive effects of cyclosporin A on IL2 expression 179,180 

IL-2 permits viral infectivity of T-lymphocytes and stimulates viral replication in infected cells 181

NF

Reduces Borrelia infection in mice 182

T.Gondii Infectious burden is increased in IL2 knockout mice  183

IL3 interleukin 3 (colony-stimulating factor, multiple)

NF

NF

Protects mice from HSV-1 infection by promoting interferon production 184

NF

NF

IL3 and IL6 limit T.Gondii replication in mice microglia . TNF or prolactin kill T.Gondii in microglia, effects accompanied by  the release of IL1B, IL3 and IL6. T.Gondii killing is reversed by IL3 or IL6 antibodies185

IL3RA interleukin 3 receptor, alpha (low affinity)

See above

See above

See above

See above

See above

See above

IL4: Interleukin 4

Delays clearance of the virus in infected mice186 and increase viral cytotoxicity in cell culture 187.

Occular infection correlates with periods of high IL4 levels 188. The ability of CMV to infect human monocytes also shows IL4 dependence 189. IL4 is produced by T-cells in response to CMV 190

CMV can be reactivated by IL4 and other cytokines in myeloid cells 165. TNF, IL1B and IL4 can activate the CMV intermediate gene promoter 166. IL4 plays a permissive role for CMV infection of monocytes 189.

NF

IL4 and IFNG levels are increased in the CSF of infected patients 191. IL4 increases resistance to infection in mice 192

T.Gondii related mortality is enhanced in IL4 knockout mice, brain damage is increased and more cysts are observed 193

LTA

Lymphotoxin alpha

CD8 T cell responses to influenza are impaired in LTA knockout mice 194,195 . Bone marrow B cell apoptosis following viral infection in mediated by TNF and LTA 196

Natural killer cells release LTA and TNF in response to CMV infection, LTA is involved in the release of interferon beta from infected fibroblasts, which inhibits viral replication 197

LIGHT and LTA are ligands for the herpes viral entry mediator (HCEM/ TNFRSF14)198 LTA-deficient mice show enhanced susceptibility to HSV-induced encephalitis 199

NF

NF

Cerebral infection increased in LTA or TNF knockout mice 200

IL10 Interleukin-10

Plasma levels of IL-6, TNF-alpha, INF-alpha, INF-gamma and IL-10 are increased following influenza infection 201

A viral homolog of IL10 binds to IL10RA20 IL10 polymorphisms modify infectivity in man 129.

Suppresses chemokine expression induced by HSV-1 corneal 202or microglia 203infection. IL10 polymorphisms modify HSV-1 infection in man 204.

Elevated seruum levels following infection 205.

Serum levels increased following infection in children 205

Induced by T.Gondii infection and Involved in the immunosuppression produced by the parasite 206. Increased secretion of TNA and IL10 in infected microglia 148 . Anti-IL10 antibodies reduce infection in mice 193

MICB MHC class I polypeptide-related sequence B

Upregulated in influenza-infected macrophages 207

Binds to the CMV protein UL16 and other « ULBP’s ». CMV infection increases expression of MICA andMICB, ligands for the natural killer cell receptor NKG2D (KLRK1). Activation of this receptor triggers Natural killer cells and costimulates antigen-specific effector CD8 T cells. MICB binding by UL16 may circumvent this immune response 208,209,210A viral encoded microRNA (UK112) targets and downregulates MICB211

Polymorphisms in MICB correlate with HSV-1 seropositivity 212

NF

NF

NF

IL12B natural killer cell stimulatory factor 2, 
cytotoxic lymphocyte maturation factor 2, p40

NF

Suppresses CMV infection 213

HSV1 viral load is decreased by IL12 in mice 214

NF

NF

Parasite burden is increased in IL12 knockout mice 215

IL18

Viral clearance is enhanced in IL18 defficient mice 216. IL18 increases resitance to influenza by increasing natural killer cell activity 217.

IL18 activated natural killer cells play a role in defense against CMV 218

IL18 protects mice against HSV-1 infection 219. Infection increased in IL18 knockout mice. Related to reduced activity of natural killer cells 220.

   

IL2 + IL18 protect against T.Gondii infection via activation of natural killer cells 221. IL18 enhances resistance to T.Gondii 222.

IL18R1

See above

         

IL18RAP

See above

See above

Associated with HSV-1 seropositivity in schizophrenia cases  223.

NF

NF

 

TNFA: Tumor necrosis factor alpha

One of many cytokines induced by influenza infection 224. Inhibits interferon alpha release induced by influenza infection of dendritic cells 225

IL1RN (variable numbers of 86-bp repeats in intron 2) and TNF polymorphisms (base exchange polymorphism at position -308) modify Cytomegalovirus infectivity 173 CMV protein UL144 encodes for a TNF receptor mimic that activates nuclear factor kappa B signaling 226

Can both inhibit and reactivate HSV-1 infection. Inhibits virtal replication in Hep2 cells via induction of IFN beta 227 but can encance the replication and reactivation in the mouse trigeminal ganglia 228. TNF and IL1B induced by infection of murine microglia 164. Mortality to HSV1 encepalitis is increased in TNF knockout mice 229

NF

Expression and secretion markedly induced by Borrelia infection of macrohages, microglia and astrocytes 230,231,232,233. Infection in mice can be reactivated by TNF antibodies 234

Host TNF plays an important role in controlling resitance to T.Gondii235. The parasite retaliates via a number of mechanisms that reduce TNF production induced by several pathwaysincluding  MAP kinase NFKB1,  Toll-like receptor

and STAT3 related networks 236,237,238,239. Cerebral infection increased in LTA or TNF knockout mice 200

HLA-A10

NF: But HLA-A10 in common with Chlamydia Psitacci infection is an important risk factor 240

NF

NF

NF

Expression increased by rubella infection of  human adult fibroblasts Adamo et al, 2008

NF

HLA-B

Viral peptide binds to HLA-B37 241

Polymorphisms modify the T-cell response to cytomegalovirus 242

HLA-b antigen frequeny related to HSV-1 infection 243,244

Involved in viral infection and the response to vaccination 245,246

Expression increased by rubella infection of  human embrionic and adult fibroblasts Adamo et al, 2008

Human transgene HLA-B27 is a determinant of T.gondii cyst formation in mice 247

HLA-DRB1 DRB1*04

major histocompatibility complex, class II, DR beta 1

Recognises peptides derived from the influenza virus 248,249

NF

NF

NF

Recognises peptides derived from the Rubella virus 250

Recognises peptides derived from  Borrelia burgdorferi 251,252

TPP2 Tripeptidyl petidase II

Involved in the antigen processing of the Influenza virus 253

NF

NF

NF

NF

NF

CNR1 Cannabinoid receptor 1

Delta-9-tetrahydrocannabinol increases viral load in influenza-infected mice 254

NF

Cannabinoids have immunosuppressive properties and delta-9-tetrahydrocannabinol reduces reistance to HSV-2 infection in mice 255

NF

NF

 

FOXP2 Forkhead box P2

Expression increased in brains of the offspring of influenza-infected mice 256

Forkhead proteins including FOXP2 bind to NFAT , an important regulator of T-cell function 257

NF

NF

NF

NF

NF

Glutathione and oxidative stress

Gene

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdorferi

T. Gondii

GCLC and GCLM  glutamate-cysteine ligases

(glutathione synthase)

Glutathione reduces infectivity in mice 258

Glutathione levels also modify the infectivity of the human cytomegalovirus and endothelial cells naturally containing higher levels of glutathione are more resistant to infection 259

HSV-1 infection of microglia results in the upregulation of the glutamate/cysteine transporter SLC1A2. Buthionine sulfoximide, which inhibits glutathione synthesis, increases the number of HSV-1 infected, cells 260.  HSV-1 infection decreases intracellular glutathione levels in Vero cells and glutathione supplementaion markedly inhibits viral replication 261.  S-acetylglutathione, reduces HSV-1 induced mortality in mice 262.

NF

NF

Glutathione causes parasite egress in infected cells. It activates a T.Gondii secreted apyrase (nucleoside triphosphate hydrolase) in the parasite vacuole resulting in a rapid depletion of host cell ATP 263

GSTM1 Glutathione transferase M1

NF

NF

 

NF

   

HP Haptoglobin

NF

NF

NF

NF

NF

Serum levels increased by infection in mice 264

MDR1/ABCB1 P-glycoprotein 1

Cells overexpressing P-glycoprotein are resistant to Influenza infection . It was suggested that this may apply to other enveloped viruses entering cells by plasma membrane fusion  eg Herpes simplex and HIV-1) 265

NF

See Influenza

NF

NF

Expression reduced by T.Gondii  infection of cancer cells 266

ME2 malic enzyme 2, NAD(+)-dependent, mitochondrial

NF

NF

NF

NF

NF

NF

NOS1Nitric oxide synthase

Influenza infection in utero increases hippocampal NOS1 expression in neonatal mice 267

No specific relationships with NOS1. Nitric oxide can promote both beneficial and deleterious effects against CMV infection 268

Cerebral expression increased by infectionin mice 269. S-nitrosylation of viral proteins may constitute a host-defense mechanism 270

NF

No specific links with NOS1. Nitric oxide kills Borrelia species 271

NO derived from macrophages is toxoplasmacidal 272

PTGS2

Cyclooxygenase-2

Infection increases expression 21.Influenza-induced mortality is reduced in PTGS2 knockout mice although lung viral titers are increased 273 .

Infection increases PTGS2 expression, an effect linked to increased viral replication 274,275,276,277: PTGS2 inhibitors can inhibit viral replication 278,279

Activity increased by infection . Cox-2 inhibitors inhibit viral infection and reactivation 280

Expression increased by rubella infection of  human embryo fibroblasts Adamo et al, 2008

Expression increased in infected murine microglia 281

PTGS2 expression increased in infected cells 282

SOD2 2 superoxide + 2 H(+) ó O2 + H2O2

Induced by cellular viral infection 283,284,285. Viral replication reduced by recombinant SOD2 in mice 286

NF

NF

Expression increased by rubella infection of  human embryo fibroblasts Adamo et al, 2008

NF. The spirochete produces its own superoxide dismutase 287 Upregulated by T.gondii infection of  human fibroblasts 288

The parasite produces its own superoxide dismutase 289 Protein upregulated after T.Gondii infection of fibroblasts 119

Molecular mimicry

Gene

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

CHRNA7

Nicotinic receptor alpha subunit

NF

NF

Molecular mimicry between PESDQPDL), and residues [286-293] (PNATQPEL) of nicotinic receptor and [381-388] (PEDDQPSS) of HSV-GpD.

NF

NF

NF

CNP 2’,3’-cyclic nucleotide 3’ phosphodiesterase 

Large enveloped DNA viruses including Influenza possess intrinsic cyclic nucleotide phosphodiesterase activity. Viral yield in chick myeloblasts is correlated with cellular CNPase activity suggesting a role of the host and viral enzyme in viral replication 303.

NF

Elevated CSF activity of CNP in Bell’s palsy patients correlated with HSV-1 seropositivity 304

NF

Molecular mimicry reported between CNP1 and a borrelia antigen 305

Cyclic AMP stimulates T.gondii growth306

GAD1  (GAD67) Glutamate decarboxylase 1

Cerebral exression in neonates increased following infection in utero 307

NF 

NF

Molecular mimicry between GAD65or GAD67 and a Rubella antigen in diabetic patients 308

NF

NF

TYR Tyrosinase

NF

Antigenic molecular mimicry has been observed between a cytomegalovirus envelope glycoprotein H peptide and Tyrosinase 309

HSV-1 viral vectors (per se) activate the tyrosinase promoter 310

NF

NF

NF

MAG  myelin-associated glycoprotein

NF

Cytomegalovirus infection correlates with IgM anti-MAG /antibody levels in neuropathic conditions 311

NF

NF

NF

NF

MOG

myelin oligodendrocyte glycoprotein

NF

Human CMV-UL86 peptide 981-1003 shares a crossreactive T-cell epitope with the  MOG peptide 34-56 312

NF

Rubella virus antibodies induces demyelination in culture, an effect related to moleculalar mimicry betwwen MOG and structural glycoprotein E(2)of the virus 313

NF

NF

PLP1

Expression of PLP1 and MBP is  downregulated in newborn mouse brain following maternal influenza infection 314

NF

Expresion increased in the trigeminal ganglia follwing reactivation of HSV-1 infection in rabbits 315

Rubella infection can produce reactive T-cells generating autoantibodies to myelin basic protein and PLP1316

NF

NF

Diverse binding partners and interactions

Gene

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

ACE Angiotensin converting enzyme (synthesises angiotensin II)

Cleaves an influenza antigen  nucleoprotein (NP)(147-158R-) 317

NF

NF

NF

NF

Serum levels increased by Toxoplasmosis 318

ATF4 activating transcription factor 4

NF

Activated by CMV infection 319

Binds to the Latency transcript of HSV-1 320.

     

NQO2 NAD(P)H dehydrogenase, quinone 2

NF

NF

NF

NF

NF

Binds to a T.Gondii GRA protein forming a part of the parasparasitophorous vacuole 321

PAX6 paired box gene 6 (aniridia, keratitis)

NF

NF

NF

NF

NF

Binds to GRA3, a T.gondii secreted protein important in the parasitophorous vacuole.321

TF transferrin

NF

NF

NF

NF

Binds to a Borrelia protein 322

Binds to T.Gondii proteins 323

TP53

tumor protein p53

P53 is upregulated by viral infection and is involved in the apoptotic cell death induced by the virus. Apoptosis in vitro and in vivo is attenuated by p53 knockout which also inhibits viral replication 324.

HCMV infection induces a rapid stabilisation of p53 which is sequestered by the virus into its replication centres . P53 enables viral replication 325A viral protein IE2 binds to TP53326

HSV-1 infection stabilises p53 327. RL2 ubiquitin E3 ligase ICP0 binds to TP53 328

Involved in Rubella-dependent apoptosis 329

NF

NF

Hsa-mir-198

Vita database

hsa-mir-198 is predicted to target viral genes encoding for the Influenza virus PB2 protein and for structural proteins E1, E2 and C of the Rubella virus as well as to diverse viral genes encoded by the Aichi virus, Banna virus, human coronavirus, Dengue virus type 1, Eyach virus, GB virus C, Hantaan virus, hepatitis C, HIV-2, Japanese encephalitis virus, poliovirus, parainfluenza virus, and the Mammalian orthoreovirus 3.

   

Hsa-mir-206

Vita database

hsa-mir-206 is  predicted to target genes of  the Human coxsackievirus B2, Crimean-Congo hemorrhagic fever virus, Dengue virus Type 3, GB virus C , Hantaan virus, Hepatitis C,  HIV-2, Kadipiro virus, human poliovirus 1 and the Human parainfluenza virus

   

Glutamate general: One of the ways in which the influenza virus could affect postsynaptic function is via its interactions with the dendritic mRNA transport protein, staufen, to which the NS1 influenza protein binds 330. Dendrites contain messenger RNA, thought to code for many of the elements necessary for glutamatergic transmission, plasticity and protein synthesis 331 and processes implicated in neuronal plasticity. The herpes virus also triggers the formation of varicosities along the axons of sensory neurones that stain for synaptophysin and closely resemble presynaptic terminals 332. These effects are mediated by viral activation of the rho GTP binding protein CDC42, which also plays a key role in the maturation of presynaptic glutamatergic terminals 333. These varicosities serve as exit sites for the herpes virus, and if they correspond to presynaptic terminals, presumably contain many of the components of these structures (eg synapsins, complexins and syntaxins). The M1 protein of the influenza virus also binds to CDC42  334 whose suppression inhibits viral production.

Glutamatergic and related

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

DAO D-amino acid oxidase

NF

NF

NF

NF

NF

NF

DAOA D-amino acid oxidase activator

NF

NF

NF

NF

NF

NF

SRR Serine racemase

NF

NF

NF

NF

NF

NF

NAALAD2

N-acetylated alpha-linked acidic dipeptidase 2

NF

NF

Reduced cerebral N-acetylaspartate/choline ratios have been observed in Herpes simplex encephalitis 335,336

NF

NF

NF

SLC15A1
solute carrier family 15 (oligopeptide transporter), member 1 (PEPT1)

NF.

NF

NF

NF

NF:Substrates include bacterial derived N-formyl peptides 337

NF

PRODH Proline dehydrogenase

NF

NF

NF

Expression reduced by rubella infection of  human adult fibroblasts Adamo et al, 2008

NF

NF

SLC1A2 solute carrier family 1 (glial high affinity glutamate transporter), member 2

NF

NF

Upregulated by HSV-1 infection of microglia 338

NF

NF

NF

NOSIAP (CAPON) (also postsynaptic)  

NF

NF

NF

NF

NF

NF

CPLX2
 Complexin II

NF

NF

NF

NF

NF

NF

SNAP29 synaptosomal-associated protein, 29kDa

NF

NF

NF

NF

NF

NF

SYN2 Synapsin II

NF

NF

NF

NF

NF

NF

SYN3 Synapsin III

NF

NF

NF

NF

NF

NF

STX1A Syntaxin 1a

NF

NF

NF

NF

NF

NF

SYNGR1 Synaptogyrin 1

NF

NF

NF

NF

NF

 

GRM3 Metabotropic glutamate receptor mgluR3 

NF

NF

NF

Expression reduced by rubella infection of  human embryo fibroblasts Adamo et al, 2008

NF

NF

GRM4 Metabotropic glutamate receptor mgluR4 

NF

NF

NF

NF

NF

NF

GRM8 Metabotropic glutamate receptor mgluR8 

NF

NF

NF

NF

NF

NF

GRIA1 AMPA receptor subunit
 

Neuronal transfection of the influenza nucleoprotein  results in the distribution of the viral protein to dendritic spines. The frequency of spontaneous excitatory synaptic activity and  the amplitude of  miniature excitatory postsynaptic currents is reduced. The results suggest that the viral protein intereed with the expression or anchoring of postsynaptic glutamate receptors 339

HSV-1 innoculation increases hippocampal excitability but no particular receptor subtype has been examined 340

NF

NF

NF

NF

GRIA4 (AMPA receptor subunit )

See above

NF

NF

NF

NF

NF

GRIK3 Kainate receptor

NF

NF

NF

NF

NF

NF

GRIK4 Kainate receptor

NF

NF

NF

NF

NF

NF

GRID1 glutamate receptor, ionotropic, delta 1

NF

NF

NF

NF

NF

NF

GRIN1

(NMDA receptor subunit NR1)

NF

Hippocampal expression reduced following CMV infection in mice. Also observed in primary neuronal culture 341

Expression reduced following the introduction of an attenuated  HSV-1 vector to PC12 cells. Correlated with the appearance of viral ICP0 and ICP27 genes 338 HSV-1 infection increases spinal cord quinolinic acid 342 

NF

Elevated serum and CSF levels of the NMDA agonist quinolinic acid in Lyme disease 343

NF

GRIN2A NMDA receptor

NF

NF

NMDA receptor antagonism attenuates the effects of HSV-1 encephalitis in mice via an effect on microglial NMDA receptors 344.

NF

NF

NF

GRIN2B NMDA receptor subunit NR2B

In a Rasmussen syndrome patient with seizure onset after influenza A infections, cross-reaction of the patient's lymphocytes with GluR epsilon 2 (GRIN2B) and influenza vaccine components was observed. Database analyses revealed that influenza A virus hemagglutinin and GluR epsilon 2 molecules contain peptides with the patient's HLA class I binding motif (HLA - A*0201)345

NF

See above

NF

NF

NF

GRIN2D NMDA receptor subunit NR2D

NF

NF

See above

NF

NF

NF

GRM5 Metabotropic glutamate receptor mgluR5 

NF

NF

NF

NF

NF

NF

APC adenomatous polyposis coli (colorectal tumor suppressor)

NF

NF

Down regulated by HSV-1 infection of rat fibroblasts 79

NF

NF

NF

ATXN1 (SCA1): ataxin 1)

NF

NF

NF

Expression reduced by rubella infection of  human embryo fibroblasts Adamo et al, 2008

NF

NF

DLG2 Chapsyn-110 

Downregulated in neocortex at postnatal days 35/36 following prenatal influemza infection in mice 40

NF

NF

NF

NF

NF

DRPLA dentatorubral-pallidoluysian atrophy or atrophin-1

NF

NF

NF

NF

NF

NF

HOMER1

Downregulated in neocortex at postnatal days 35/36 following prenatal influemza infection in mice 40

NF

Down regulated by HSV-1 infection of rat fibroblasts 79

Expression increased by rubella infection of  human adult fibroblasts Adamo et al, 2008

NF

NF

PICK1 protein kinase C alpha binding protein

NF

NF

The herpes virus (HSV-1) uses nectin receptors (PVRL1-3) to gain entry to host cells PICK1 is a scaffolding partner for these receptors 346 and for the Coxsackie virus receptor 347 

NF

NF

NF

 

Miscellaneous

Influenza

Cytomegalovirus

Herpes

Rubella

Borrelia burgdefoori

T. Gondii

ADCYAP1 adenylate cyclase activating polypeptide 1 (pituitary)(PACAP)

NF

NF

Induces Herpes viral activation in HSV-1 infected  but quiescent PC12 cells348

NF

NF

NF

ADH1B  alcohol dehydrogenase IB (class I), beta polypeptide

NF

NF

NF

NF

NF

NF

ADRA1A adrenergic, alpha-1A-, receptor

NF

NF

NF

NF

NF

NF

AHI1
Abelson helper integration site 1

NF

NF

NF

NF

NF

NF

ALDH3B1 Aldehyde dehydrogenase 3 family, member B1

NF

NF

NF

NF

NF

NF

APOE Apolipoprotein E

NF

NF

Involved in the cerebral uptake of Herpes simplex virus 349

NF

NF

NF

ARHGEF10

NF

NF

NF

NF

NF

NF

BRD1
Bromodomain containing 1

NF

NF

NF

NF

NF

NF

BZRP TSPO translocator protein (18kDa) aka peripheral benzodiazepine receptor

NF

A viral cytomegalovirus mitochondrial Bax inhibitor  inhibits cell death induced by PK11195/starvation

350

NF

NF

NF

NF

CCKAR cholecystokinin A receptor

NF

NF

NF

NF

NF

NF

CHGB Chromogranin B

NF

NF

NF

NF

NF

NF

CLOCK circadian locomoter output cycles kaput protein; clock

NF

Experiments using the firefly luciferase gene under the control of the promoter and enhancer of the human cytomegalovirus major immediate-early gene (CMV::luc) in mice show that the viral gene is expressed in vivo around dusk, and during the active locomotor phase of the circadian rhythm 351. Similar experiments using culture of the suprachiasmatic nucleus suggest circadian control of  viral transgene expression 352.

NF

NF

NF

NF

DDR1 discoidin domain receptor family, member 1(collagen receptor)

NF

NF

NF

NF

Borrelia binds to collagens 353

NF

DPYSL2 dihydropyrimidinase-like 2

NF: Involved in T-cell migration and polarization. DPYSL2 positive lymphocytes are recuited to the brain by neurotropic viral infection (canine distemper and Rabies virus) 354

NF

NF

NF

NF

NF

DRD2 Dopamine receptor

NF

NF

NF

NF

NF

Neuroleptics inhibit T.gondii replication 355

DRD3  Dopamine receptor

NF

NF

NF

NF

NF

NF

DRD4 Dopamine receptor

NF

NF

NF

NF

NF

NF

DRD5 Dopamine receptor

NF

NF

NF

NF

NF

NF

FXYD6 FXYD domain-containing ion transport regulator 6; phosphohippolin

NF

NF

NF

NF

NF

NF

FZD3 Frizzled 3

NF

NF

NF

NF

NF

NF

GABBR1 GABA-B receptor 1

NF

NF

GABA or TTX inhibit cerebral viral replication 356.

NF

NF

NF

GNAS guanine nucleotide binding protein (G protein), alpha stimulating activity
 

NF

NF

Expression increased by HSV-1 infection of trigeminal gamglia in mice 302

NF

NF

NF

GPR78 Orphan GPCR

NF

NF

NF

NF

NF

NF

HMBS Hydroxymethylbilane synthase (Invoved in heme synthesis) 

NF

NF

NF

NF

NF

NF

HRH2 H2 Histamine receptor

Plasmacytoid dendritic cells are an important source of interferon type 1 following viral infection. Histamine inhibits interferon release from these cells via the H2 receptor 357

NF

NF

NF

NF

NF

HTR2A Serotonin receptor

NF :The receptor is used by the Polyoma JCV virus for entry into glial cells. The virus causes demyelinating disease 358

NF

Down regulated by HSV-1 infection of rat fibroblasts 79

NF

NF

NF

HTR5A Serotonin receptor

NF

NF

NF

NF

NF

NF

HTR6 Serotonin receptor

NF

NF

NF

NF

NF

NF

HTR7 Serotonin receptor

NF

NF

NF

NF

NF

NF

JARID2 jumonji, AT rich interactive domain 2

NF

NF

NF

NF

NF

NF

KCNN3 small conductance calcium-activated potassium channel, (Alias Kca2.3, SK3, SKCA3, hSK3)

NF

NF

NF

NF

NF

NF

KLH1AS (SCA8) spinocerebellar ataxia 8

NF

NF

NF

NF

NF

NF

LGI1 leucine-rich, glioma inactivated 1

NF

NF

NF

NF

NF

NF

MAOA Monoamine oxidase A

NF

NF

NF

NF

NF

NF

MCHR1 (GPR24) Melanocyte concentrating hormone receptor 1

NF

NF

NF

NF

NF

NF

MLC1 (WKL1) megalencephalic leukoencephalopathy with subcortical cysts 1 homolog (human)

NF

NF

NF

NF

NF

NF

MPZL1 Myelin protein zero like 1

NF

NF

NF

NF

NF

NF

ND4

NADH dehydrogenase subunit 4

NF

A viral RNA binds to GRIM-19 which is responsible for the assembly of complex 1 359

NF

NF

NF

Downregulated by T.Gondii infection of porcine kidney epithelial cells 84

NDUFV2
24-kDa subunit of Complex I ; NADH dehydrogenase (ubiquinone) flavoprotein 2 (24kD)

NF

A viral RNA binds to GRIM-19 which is respondible for the assembly of complex 1 359

NF

NF

NF

NF

NOTCH4 Notch homolog 4

NF

NF

Redo

NF

NF

NF

NPAS3 neuronal PAS domain protein 3

NF

NF

NF

NF

NF

NF

NPY Neuropeptide Y

NF

NF

Upregulated by HSV-1 infection of mouse fibroblasts 360

NF

NF

NF

NTNG1 Netrin G1

NF

NF

NF

NF

NF

NF

NTNG2 Netrin G2

NF

NF

NF

NF

NF

NF

NUMBL  numb homolog (Drosophila)-like

NF

NF

NF

NF

NF

NF

OLIG2  
oligodendrocyte lineage transcription factor 2

NF

NF

NF

NF

NF

NF

OPRS1 opioid receptor, sigma 1

NF

NF

NF

NF

NF

NF

PAH Phenylalanine hydroxylase

NF

NF

NF

NF

NF

NF

PDE4B  Phosphodiesterase 4B

Influenza virus inhibits cAMP phosphodiesterase.  Isoform not specified.  361

The non-specific phosphodiesterase inhibitor pentoxyfylline  promotes the replication of the CMV virus 362

Phosphodiesterase inhibitors 1-methyl-3-isobutylxanthine and theophylline have growth suppressive effects and   reduce cell-to-cell spread of HSV-1 in fibroblasts.363

Expression increased by rubella infection of  human adult fibroblasts Adamo et al, 2008

NF

T. Gondii lacks the ability to synthesise the purine ring and relies on purine salvage from the host 364. Cyclic AMP stimulates T.gondii proliferation in HL-60 cells. CyclicAMP phosphodiesterase inhibitors stimulate and activators inhibit T.Gondii growth 306

PDLIM5 PDZ and LIM domain 5

NF

NF

NF

NF

NF

NF

PER3 period homolog 3

NF

NF

NF

NF

NF

NF

PHOX2B   paired-like homeobox 2b

NF

NF

NF

NF

NF

NF

PLXNA2 Plexin A2

NF

NF

NF

Expression reduced by rubella infection of  human embryo fibroblasts Adamo et al, 2008

NF

NF

PNOC Prepronociceptin

NF

NF

NF

NF

NF

NF

PPP1R1B

NF

NF

NF

 

NF

NF

PPP3CC Calcineurin A gamma

NF

NF

NFAT transcription factors play an important role T cell receptor activation and in the immune response. The nuclear imort of NFAT is controlled by calcineurin and NFAT import is blocked by HSV1 infection 365 . In primary neurones calcineurin inhibition increases the expression of the viral ICP0 protein 366

NF

NF

A T.Gondii protein is highly homologous to cyclophilins and  calcineurin 367. An FK506- and cyclosporin-binding protein of T.Gondii possesses N-terminal FK506 binding protein P and

      C-terminal Cyclophilin domains and inhibits calcineurin 368

QK1 Quaking

NF

NF

NF

NF

NF

NF

RBP1

     

Expression decreased by rubella infection of  human embrionic fibroblasts Adamo et al, 2008

   

RELN Reelin

Reduced cortical and hippocampal immunoreactiviy in influenza-infected mice  369

NF

NF

NF

Borrelia burgdorferi binds to Toll-like receptors and also to the integrin alpha(3)beta(1) (ITGA3), through which it activates the expression of metalloproteases and inflammatory cytokines including TNF and IL1B 370.In the brain, ITGA3 is also known to bind to the extracellular matrix protein Reelin (RELN) 371and Reelin/integrin system controls the surface expression of NMDA receptors (GRIN1, GRIN2B) 372

T.Gondii contact with the cell surface in fibroblasts is mediated by laminins on the parasite surface, which bind to host beta 1 integrins 373The Reelin/beta 1 integrin system controls the surface expression of NMDA receptors (GRIN1, GRIN2B) 372, although the effects of T.Gondii on Reelin/NMDA receptor interactions have not been studied. 

RGS4 regulator of G-protein signalling 4

Influenza infection increases expression in the amygdala, hypothalamus and cerebellum in mice 374.

NF

NF

Expression increased by rubella infection of  human adult fibroblasts Adamo et al, 2008

NF

NF

RHD

NF

NF

NF

NF

NF

NF

RTN4 reticulon 4 (NOGO) 

NF

NF

NF

NF

NF

NF

RTN4R Reticulon 4 receptor

NF

NF

NF

NF

NF

NF

S100B

NF

NF

NF

NF

NF

NF

SLC18A1 solute carrier family 18 (vesicular monoamine), member 1

NF

NF

NF

NF

NF

NF

SLC18A2 solute carrier family 18 (vesicular monoamine), member 2

NF

NF

NF

NF

NF

NF

SLC6A3 DAT1 dopamine transporter

NF

NF

NF

NF

NF

Protein downregulated after T.Gondii infection of human fibroblasts 119

SLC6A4 Serotonin transporter

NF

NF

NF

NF

NF

NF

SLIt3

NF

NF

NF

NF

NF

NF

SOX10

NF

NF

NF

NF

NF

NF

SULT4A1 Sulfotransferase 4a1

NF

NF

NF

NF

NF

NF

TAAR6 Trace amine receptor 6 

NF

NF

NF

NF

NF

NF

TH Tyrosine hydroxylase 

NF

Persistent infection of neuroblastoma cells reduces TH and dopamine beta hydroxylase activity 375

Infection of PC12 cells results in an early decline in TH activity followed by a return to basal levels and a late increase in activity 376

NF

NF

NF

TIMELESS

NF

NF

NF

 

NF

NF

UCP2
Uncoupling protein 2

NF

NF

NF

NF

NF

UCP2 knockout mice are resistant to T.Gondii infection 377. Generally modifies innate immunity 378

UCP4 (SLC25A27)
Uncoupling protein 4

NF

NF

NF

NF

NF

NF

UHMK1

NF

Phosphorylation of p27kip1 by UHMK1 increases its export from the nucleus resulting in increased degradation  379. While no direct interaction between UHMK1 and CMV has been reported, P27kip1 is degraded in cells  infected with cytomegalovirus 380.

NF

NF

NF

NF

YWHAH tyrosine 3-monooxygenase/tryptophan 5-monooxygenase-activation protein, eta polypeptide, 14-3-3 eta.

NF

NF

14-3-3 proteins  bind to vp16381

NF

NF

Protein expression downregulated after T.Gondii infection of fibroblasts 119

ZDHHC8 zinc finger, DHHC domain containing 8

NF

NF

NF

NF

NF

NF

 
Receptors and growth factors with important neural functions also play an important role in T- and B- lymphocyte function: Some examples are listed below.

Neurotansmitter and growth factor control of T- and B-cells

T-Cells

B-cells

DRD2

Role in T-cell activation. Activates IL10 secretion 382

Expressed on B-cells 383

DRD3

Induces homing and T-cell migration 384 : and TNF secretion 382.Expression elevated in schizophrenia385 

Expressed on B-cells 383

DRD4

Induces quiescence inT-Cells 386

-

DRD5

Role in T-cell activation: Induces IL10 and TNF secretion  382

Expressed on B-cells 383

SLC6A3

-

Expressed on B-cells 383

HTR2A

Decrease T cell proliferation 387

-

HTR3

T-cell activation 388

-

HTR7

Enhances T-cell activation 389

-

SLC6A4

Present in T-cells 390

Present in B-cells 390

GRIN1/GRIN2B

Stimulate T-cell activation 391

-

GRM5

Impairs T-cell activation  392

-

BDNF

Released by activated T-cells 393

Plays a role in B-cell development 394

NTF3

Released by activated T-cells 393

-

 
Reference List

1. Chu, V. C. and Whittaker, G. R. Influenza virus entry and infection require host cell N-linked glycoprotein. Proc.Natl.Acad.Sci.U.S.A 2004; 101: 18153-18158.

2. Mastromarino, P., Cioe, L., Rieti, S., and Orsi, N. Role of membrane phospholipids and glycolipids in the Vero cell surface receptor for rubella virus. Med Microbiol.Immunol. 1990; 179: 105-114.

3. Vancova, M., Nebesarova, J., and Grubhoffer, L. Lectin-binding characteristics of a Lyme borreliosis spirochete Borrelia burgdorferi sensu stricto. Folia Microbiol.(Praha) 2005; 50: 229-238.

4. Ogawa-Goto, K., Arao, Y., Ito, Y., Ogawa, T., Abe, T., Kurata, T. et al. Binding of human cytomegalovirus to sulfated glucuronyl glycosphingolipids and their inhibitory effects on the infection. J Gen.Virol. 1998; 79 ( Pt 10): 2533-2541.

5. Luther, P., Cushley, W., Holzer, C., Desselberger, U., and Oxford, J. S. Acetylated galactosamine is a receptor for the influenza C virus glycoprotein. Arch.Virol. 1988; 101: 247-254.

6. Serafini-Cessi, F., Dall'Olio, F., Malagolini, N., and Campadelli-Fiume, G. Temporal aspects of O-glycosylation of glycoprotein C from herpes simplex virus type-1. Biochem.J 1989; 262: 479-484.

7. Striepen, B., Zinecker, C. F., Damm, J. B., Melgers, P. A., Gerwig, G. J., Koolen, M. et al. Molecular structure of the "low molecular weight antigen" of Toxoplasma gondii: a glucose alpha 1-4 N-acetylgalactosamine makes free glycosyl-phosphatidylinositols highly immunogenic. J Mol Biol. 1997; 266: 797-813.

8. Kumari, K., Gulati, S., Smith, D. F., Gulati, U., Cummings, R. D., and Air, G. M. Receptor binding specificity of recent human H3N2 influenza viruses. Virol.J 2007; 4: 42.

9. Wu, W. and Air, G. M. Binding of influenza viruses to sialic acids: reassortant viruses with A/NWS/33 hemagglutinin bind to alpha2,8-linked sialic acid. Virology 2004; 325: 340-350.

10. Ravindranath, R. M. and Graves, M. C. Attenuated murine cytomegalovirus binds to N-acetylglucosamine, and shift to virulence may involve recognition of sialic acids. J Virol. 1990; 64: 5430-5440.

11. Teuton, J. R. and Brandt, C. R. Sialic acid on herpes simplex virus type 1 envelope glycoproteins is required for efficient infection of cells. J Virol. 2007; 81: 3731-3739.

12. Monteiro, V. G., Soares, C. P., and De Souza, W. Host cell surface sialic acid residues are involved on the process of penetration of Toxoplasma gondii into mammalian cells. FEMS Microbiol.Lett. 1998; 164: 323-327.

13. Blumenschein, T. M., Friedrich, N., Childs, R. A., Saouros, S., Carpenter, E. P., Campanero-Rhodes, M. A. et al. Atomic resolution insight into host cell recognition by Toxoplasma gondii. EMBO J 2007; 26: 2808-2820.

14. Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N., and Huang, E. S. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 2003; 424: 456-461.

15. Han, G. P., Li, L., Kosugi, I., Kawasaki, H., Tsuchida, T., Miura, K. et al. Enhancement of susceptibility of adult mouse brain to cytomegalovirus infection by infusion of epidermal growth factor. J Neurosci Res. 2007; 85: 2981-2990.

16. Yoneda, T., Urade, M., Sakuda, M., and Miyazaki, T. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection. J Clin.Invest 1986; 77: 1613-1621.

17. Liang, Y., Kurakin, A., and Roizman, B. Herpes simplex virus 1 infected cell protein 0 forms a complex with CIN85 and Cbl and mediates the degradation of EGF receptor from cell surfaces. Proc.Natl.Acad.Sci.U.S.A 2005; 102: 5838-5843.

18. Sweeney, C. and Carraway, K. L., III. Negative regulation of ErbB family receptor tyrosine kinases. Br.J Cancer 2004; 90: 289-293.

19. Kaner, R. J., Baird, A., Mansukhani, A., Basilico, C., Summers, B. D., Florkiewicz, R. Z. et al. Fibroblast growth factor receptor is a portal of cellular entry for herpes simplex virus type 1. Science 1990; 248: 1410-1413.

20. Spencer, J. V. The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes. J Virol. 2007; 81: 2083-2086.

21. Mizumura, K., Hashimoto, S., Maruoka, S., Gon, Y., Kitamura, N., Matsumoto, K. et al. Role of mitogen-activated protein kinases in influenza virus induction of prostaglandin E2 from arachidonic acid in bronchial epithelial cells. Clin.Exp.Allergy 2003; 33: 1244-1251.

22. Shibutani, T., Johnson, T. M., Yu, Z. X., Ferrans, V. J., Moss, J., and Epstein, S. E. Pertussis toxin-sensitive G proteins as mediators of the signal transduction pathways activated by cytomegalovirus infection of smooth muscle cells. J Clin.Invest 1997; 100: 2054-2061.

23. AbuBakar, S., Boldogh, I., and Albrecht, T. Human cytomegalovirus stimulates arachidonic acid metabolism through pathways that are affected by inhibitors of phospholipase A2 and protein kinase C. Biochem.Biophys.Res.Commun. 1990; 166: 953-959.

24. Allal, C., Buisson-Brenac, C., Marion, V., Claudel-Renard, C., Faraut, T., Dal Monte, P. et al. Human cytomegalovirus carries a cell-derived phospholipase A2 required for infectivity. J Virol. 2004; 78: 7717-7726.

25. Saffer, L. D. and Schwartzman, J. D. A soluble phospholipase of Toxoplasma gondii associated with host cell penetration. J Protozool. 1991; 38: 454-460.

26. Saffer, L. D., Long Krug, S. A., and Schwartzman, J. D. The role of phospholipase in host cell penetration by Toxoplasma gondii. Am.J Trop.Med Hyg. 1989; 40: 145-149.

27. Thardin, J. F., M'Rini, C., Beraud, M., Vandaele, J., Frisach, M. F., Bessieres, M. H. et al. Eicosanoid production by mouse peritoneal macrophages during Toxoplasma gondii penetration: role of parasite and host cell phospholipases. Infect.Immun. 1993; 61: 1432-1441.

28. Gomez Marin, J. E., Bonhomme, A., Guenounou, M., and Pinon, J. M. Role of interferon-gamma against invasion by Toxoplasma gondii in a human monocytic cell line (THP1): involvement of the parasite's secretory phospholipase A2. Cell Immunol. 1996; 169: 218-225.

29. Harzer, K., Paton, B. C., Christomanou, H., Chatelut, M., Levade, T., Hiraiwa, M. et al. Saposins (sap) A and C activate the degradation of galactosylceramide in living cells. FEBS Lett. 1997; 417: 270-274.

30. Kaneda, K., Masuzawa, T., Yasugami, K., Suzuki, T., Suzuki, Y., and Yanagihara, Y. Glycosphingolipid-binding protein of Borrelia burgdorferi sensu lato. Infect.Immun. 1997; 65: 3180-3185.

31. Mariner, D. J., Wang, J., and Reynolds, A. B. ARVCF localizes to the nucleus and adherens junction and is mutually exclusive with p120(ctn) in E-cadherin complexes. J Cell Sci. 2000; 113 ( Pt 8): 1481-1490.

32. Kausalya, P. J., Phua, D. C., and Hunziker, W. Association of ARVCF with zonula occludens (ZO)-1 and ZO-2: binding to PDZ-domain proteins and cell-cell adhesion regulate plasma membrane and nuclear localization of ARVCF. Mol Biol.Cell 2004; 15: 5503-5515.

33. Yoon, M. and Spear, P. G. Disruption of adherens junctions liberates nectin-1 to serve as receptor for herpes simplex virus and pseudorabies virus entry. J Virol. 2002; 76: 7203-7208.

34. Lara-Pezzi, E., Roche, S., Andrisani, O. M., Sanchez-Madrid, F., and Lopez-Cabrera, M. The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner. Oncogene 2001; 20: 3323-3331.

35. Qin, M., Escuadro, B., Dohadwala, M., Sharma, S., and Batra, R. K. A novel role for the coxsackie adenovirus receptor in mediating tumor formation by lung cancer cells. Cancer Res. 2004; 64: 6377-6380.

36. Mizoguchi, E. Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology 2006; 130: 398-411.

37. Zheng, A., Yuan, F., Li, Y., Zhu, F., Hou, P., Li, J. et al. Claudin-6 and Claudin-9 Function as Additional co-Receptors for Hepatitis C Virus. J Virol. 2007;

38. Beard, M. R. and Warner, F. J. Claudin-1, a new junction in the hepatitis C virus entry pathway. Hepatology 2007; 46: 277-279.

39. Knabb, M. T., Danielsen, C. A., McShane-Kay, K., Mbuy, G. K., and Woodruff, R. I. Herpes simplex virus-type 2 infectivity and agents that block gap junctional intercellular communication. Virus Res. 2007; 124: 212-219.

40. Fatemi, S. H., Folsom, T. D., Reutiman, T. J., and Sidwell, R. W. Viral regulation of aquaporin 4, connexin 43, microcephalin and nucleolin. Schizophr.Res. 2008; 98: 163-177.

41. Blaheta, R. A., Beecken, W. D., Engl, T., Jonas, D., Oppermann, E., Hundemer, M. et al. Human cytomegalovirus infection of tumor cells downregulates NCAM (CD56): a novel mechanism for virus-induced tumor invasiveness. Neoplasia. 2004; 6: 323-331.

42. Thoulouze, M. I., Lafage, M., Schachner, M., Hartmann, U., Cremer, H., and Lafon, M. The neural cell adhesion molecule is a receptor for rabies virus. J Virol. 1998; 72: 7181-7190.

43. Singh, S. K., Baar, V., Morbach, H., and Girschick, H. J. Expression of ICAM-1, ICAM-2, NCAM-1 and VCAM-1 by human synovial cells exposed to Borrelia burgdorferi in vitro. Rheumatol.Int. 2006; 26: 818-827.

44. Coleman, J. L., Roemer, E. J., and Benach, J. L. Plasmin-coated borrelia Burgdorferi degrades soluble and insoluble components of the mammalian extracellular matrix. Infect.Immun. 1999; 67: 3929-3936.

45. Wu, Y. P., Siao, C. J., Lu, W., Sung, T. C., Frohman, M. A., Milev, P. et al. The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. J Cell Biol. 2000; 148: 1295-1304.

46. Buxbaum, J. D., Georgieva, L., Young, J. J., Plescia, C., Kajiwara, Y., Jiang, Y. et al. Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. Mol Psychiatry 2007;

47. Endo, A., Nagai, N., Urano, T., Takada, Y., Hashimoto, K., and Takada, A. Proteolysis of neuronal cell adhesion molecule by the tissue plasminogen activator-plasmin system after kainate injection in the mouse hippocampus. Neurosci Res. 1999; 33: 1-8.

48. Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S. et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004; 306: 487-491.

49. Daniels, R., Kurowski, B., Johnson, A. E., and Hebert, D. N. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 2003; 11: 79-90.

50. Hebert, D. N., Zhang, J. X., Chen, W., Foellmer, B., and Helenius, A. The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol. 1997; 139: 613-623.

51. Laquerre, S., Anderson, D. B., Argnani, R., and Glorioso, J. C. Herpes simplex virus type 1 glycoprotein B requires a cysteine residue at position 633 for folding, processing, and incorporation into mature infectious virus particles. J Virol. 1998; 72: 4940-4949.

52. Calistri, A., Sette, P., Salata, C., Cancellotti, E., Forghieri, C., Comin, A. et al. The intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional multivesicular bodies biogenesis. J Virol. 2007;

53. Nakhasi, H. L., Ramanujam, M., Atreya, C. D., Hobman, T. C., Lee, N., Esmaili, A. et al. Rubella virus glycoprotein interaction with the endoplasmic reticulum calreticulin and calnexin. Arch.Virol. 2001; 146: 1-14.

54. Gruenberg, J. and van der Goot, F. G. Mechanisms of pathogen entry through the endosomal compartments. Nat.Rev.Mol Cell Biol. 2006; 7: 495-504.

55. Setty, S. R., Tenza, D., Truschel, S. T., Chou, E., Sviderskaya, E. V., Theos, A. C. et al. BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles. Mol Biol.Cell 2007; 18: 768-780.

56. Harson, R. and Grose, C. Egress of varicella-zoster virus from the melanoma cell: a tropism for the melanocyte. J Virol. 1995; 69: 4994-5010.

57. Legendre-Guillemin, V., Wasiak, S., Hussain, N. K., Angers, A., and McPherson, P. S. ENTH/ANTH proteins and clathrin-mediated membrane budding. J Cell Sci. 2004; 117: 9-18.

58. Tugizov, S., Maidji, E., Xiao, J., and Pereira, L. An acidic cluster in the cytosolic domain of human cytomegalovirus glycoprotein B is a signal for endocytosis from the plasma membrane. J Virol. 1999; 73: 8677-8688.

59. Gianni, T., Campadelli-Fiume, G., and Menotti, L. Entry of herpes simplex virus mediated by chimeric forms of nectin1 retargeted to endosomes or to lipid rafts occurs through acidic endosomes. J Virol. 2004; 78: 12268-12276.

60. Rust, M. J., Lakadamyali, M., Zhang, F., and Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat.Struct.Mol Biol. 2004; 11: 567-573.

61. Kee, S. H., Cho, E. J., Song, J. W., Park, K. S., Baek, L. J., and Song, K. J. Effects of endocytosis inhibitory drugs on rubella virus entry into VeroE6 cells. Microbiol.Immunol. 2004; 48: 823-829.

62. Leopold, P. L. and Pfister, K. K. Viral strategies for intracellular trafficking: motors and microtubules. Traffic. 2006; 7: 516-523.

63. Wileman, T. Aggresomes and pericentriolar sites of virus assembly: cellular defense or viral design? Annu.Rev.Microbiol 2007; 61: 149-167.

64. Kamiya, A., Kubo, K., Tomoda, T., Takaki, M., Youn, R., Ozeki, Y. et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat.Cell Biol. 2005; 7: 1067-1078.

65. Miyoshi, K., Asanuma, M., Miyazaki, I., Diaz-Corrales, F. J., Katayama, T., Tohyama, M. et al. DISC1 localizes to the centrosome by binding to kendrin. Biochem.Biophys.Res.Commun. 2004; 317: 1195-1199.

66. Camargo, L. M., Collura, V., Rain, J. C., Mizuguchi, K., Hermjakob, H., Kerrien, S. et al. Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 2007; 12: 74-86.

67. Suzuki, T., Okada, Y., Semba, S., Orba, Y., Yamanouchi, S., Endo, S. et al. Identification of FEZ1 as a protein that interacts with JC virus agnoprotein and microtubules: role of agnoprotein-induced dissociation of FEZ1 from microtubules in viral propagation. J Biol.Chem. 2005; 280: 24948-24956.

68. Atreya, C. D., Kulkarni, S., and Mohan, K. V. Rubella virus P90 associates with the cytokinesis regulatory protein Citron-K kinase and the viral infection and constitutive expression of P90 protein both induce cell cycle arrest following S phase in cell culture. Arch.Virol. 2004; 149: 779-789.

69. Mayer, D., Molawi, K., Martinez-Sobrido, L., Ghanem, A., Thomas, S., Baginsky, S. et al. Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome.Res. 2007; 6: 672-682.

70. Melen, K., Fagerlund, R., Franke, J., Kohler, M., Kinnunen, L., and Julkunen, I. Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J Biol.Chem. 2003; 278: 28193-28200.

71. Lischka, P., Sorg, G., Kann, M., Winkler, M., and Stamminger, T. A nonconventional nuclear localization signal within the UL84 protein of human cytomegalovirus mediates nuclear import via the importin alpha/beta pathway. J Virol. 2003; 77: 3734-3748.

72. Deng, T., Engelhardt, O. G., Thomas, B., Akoulitchev, A. V., Brownlee, G. G., and Fodor, E. Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol. 2006; 80: 11911-11919.

73. Ojala, P. M., Sodeik, B., Ebersold, M. W., Kutay, U., and Helenius, A. Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol Cell Biol. 2000; 20: 4922-4931.

74. Noda, Y., Okada, Y., Saito, N., Setou, M., Xu, Y., Zhang, Z. et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J Cell Biol. 2001; 155: 77-88.

75. Wolfstein, A., Nagel, C. H., Radtke, K., Dohner, K., Allan, V. J., and Sodeik, B. The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic. 2006; 7: 227-237.

76. Koshizuka, T., Kawaguchi, Y., and Nishiyama, Y. Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A. J Gen.Virol. 2005; 86: 527-533.

77. Diefenbach, R. J., Miranda-Saksena, M., Diefenbach, E., Holland, D. J., Boadle, R. A., Armati, P. J. et al. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J Virol. 2002; 76: 3282-3291.

78. Khor, R., McElroy, L. J., and Whittaker, G. R. The ubiquitin-vacuolar protein sorting system is selectively required during entry of influenza virus into host cells. Traffic. 2003; 4: 857-868.

79. Ray, N. and Enquist, L. W. Transcriptional response of a common permissive cell type to infection by two diverse alphaherpesviruses. J Virol. 2004; 78: 3489-3501.

80. Andrade, R. M., Wessendarp, M., Gubbels, M. J., Striepen, B., and Subauste, C. S. CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J Clin.Invest 2006; 116: 2366-2377.

81. Bruns, J. R., Ellis, M. A., Jeromin, A., and Weisz, O. A. Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized Madin-Darby canine kidney cells. J Biol.Chem. 2002; 277: 2012-2018.

82. Schroeder, C., Heider, H., Moncke-Buchner, E., and Lin, T. I. The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur.Biophys.J 2005; 34: 52-66.

83. Guerriero, C. J., Weixel, K. M., Bruns, J. R., and Weisz, O. A. Phosphatidylinositol 5-kinase stimulates apical biosynthetic delivery via an Arp2/3-dependent mechanism. J Biol.Chem. 2006; 281: 15376-15384.

84. Okomo-Adhiambo, M., Beattie, C., and Rink, A. cDNA microarray analysis of host-pathogen interactions in a porcine in vitro model for Toxoplasma gondii infection. Infect.Immun. 2006; 74: 4254-4265.

85. Ogawa-Goto, K., Tanaka, K., Gibson, W., Moriishi, E., Miura, Y., Kurata, T. et al. Microtubule network facilitates nuclear targeting of human cytomegalovirus capsid. J Virol. 2003; 77: 8541-8547.

86. Marozin, S., Prank, U., and Sodeik, B. Herpes simplex virus type 1 infection of polarized epithelial cells requires microtubules and access to receptors present at cell-cell contact sites. J Gen.Virol. 2004; 85: 775-786.

87. Mabit, H., Nakano, M. Y., Prank, U., Saam, B., Dohner, K., Sodeik, B. et al. Intact microtubules support adenovirus and herpes simplex virus infections. J Virol. 2002; 76: 9962-9971.

88. Coppens, I., Dunn, J. D., Romano, J. D., Pypaert, M., Zhang, H., Boothroyd, J. C. et al. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 2006; 125: 261-274.

89. Ball, R. L., Carney, D. H., and Albrecht, T. Taxol inhibits stimulation of cell DNA synthesis by human cytomegalovirus. Exp.Cell Res. 1990; 191: 37-44.

90. Pfeiffer, G., Willutzki, D., Weder, D., Becker, B., and Radsak, K. Microtubular reaction in human fibroblasts infected by cytomegalovirus. Brief report. Arch.Virol. 1983; 76: 153-159.

91. Topp, K. S., Bisla, K., Saks, N. D., and Lavail, J. H. Centripetal transport of herpes simplex virus in human retinal pigment epithelial cells in vitro. Neuroscience 1996; 71: 1133-1144.

92. Avitabile, E., Di Gaeta, S., Torrisi, M. R., Ward, P. L., Roizman, B., and Campadelli-Fiume, G. Redistribution of microtubules and Golgi apparatus in herpes simplex virus-infected cells and their role in viral exocytosis. J Virol. 1995; 69: 7472-7482.

93. Melo, E. J., Carvalho, T. M., and De Souza, W. Behaviour of microtubules in cells infected with Toxoplasma gondii. Biocell 2001; 25: 53-59.

94. Zheng, Z., Maidji, E., Tugizov, S., and Pereira, L. Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding. J Virol. 1996; 70: 8029-8040.

95. Caswell, R., Bryant, L., and Sinclair, J. Human cytomegalovirus immediate-early 2 (IE2) protein can transactivate the human hsp70 promoter by alleviation of Dr1-mediated repression. J Virol. 1996; 70: 4028-4037.

96. Shanafelt, M. C., Hindersson, P., Soderberg, C., Mensi, N., Turck, C. W., Webb, D. et al. T cell and antibody reactivity with the Borrelia burgdorferi 60-kDa heat shock protein in Lyme arthritis. J Immunol. 1991; 146: 3985-3992.

97. Anzola, J., Luft, B. J., Gorgone, G., Dattwyler, R. J., Soderberg, C., Lahesmaa, R. et al. Borrelia burgdorferi HSP70 homolog: characterization of an immunoreactive stress protein. Infect.Immun. 1992; 60: 3704-3713.

98. Ahmed, A. K., Mun, H. S., Aosai, F., Piao, L. X., Fang, H., Norose, K. et al. Roles of Toxoplasma gondii-derived heat shock protein 70 in host defense against T. gondii infection. Microbiol.Immunol. 2004; 48: 911-915.

99. Piao, L. X., Aosai, F., Chen, M., Fang, H., Mun, H. S., Norose, K. et al. A quantitative assay method of Toxoplasma gondii HSP70 mRNA by quantitative competitive-reverse transcriptase-PCR. Parasitol.Int. 2004; 53: 49-58.

100. Fang, H., Aosai, F., Mun, H. S., Norose, K., Ahmed, A. K., Furuya, M. et al. Anaphylactic reaction induced by Toxoplasma gondii-derived heat shock protein 70. Int.Immunol. 2006; 18: 1487-1497.

101. Chen, M., Aosai, F., Mun, H. S., Norose, K., Hata, H., and Yano, A. Anti-HSP70 autoantibody formation by B-1 cells in Toxoplasma gondii-infected mice. Infect.Immun. 2000; 68: 4893-4899.

102. Nowis, D., McConnell, E., and Wojcik, C. Destabilization of the VCP-Ufd1-Npl4 complex is associated with decreased levels of ERAD substrates. Exp.Cell Res. 2006; 312: 2921-2932.

103. Chevalier, M. S. and Johnson, D. C. Human cytomegalovirus US3 chimeras containing US2 cytosolic residues acquire major histocompatibility class I and II protein degradation properties. J Virol. 2003; 77: 4731-4738.

104. Tirosh, B., Iwakoshi, N. N., Lilley, B. N., Lee, A. H., Glimcher, L. H., and Ploegh, H. L. Human cytomegalovirus protein US11 provokes an unfolded protein response that may facilitate the degradation of class I major histocompatibility complex products. J Virol. 2005; 79: 2768-2779.

105. Schwan, T. G., Battisti, J. M., Porcella, S. F., Raffel, S. J., Schrumpf, M. E., Fischer, E. R. et al. Glycerol-3-phosphate acquisition in spirochetes: distribution and biological activity of glycerophosphodiester phosphodiesterase (GlpQ) among Borrelia species. J Bacteriol. 2003; 185: 1346-1356.

106. Bodaghi, B. and Michelson, S. Cytomegalovirus: virological facts for clinicians. Ocul.Immunol.Inflamm. 1999; 7: 133-137.

107. Pfefferkorn, E. R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc.Natl.Acad.Sci.U.S.A 1984; 81: 908-912.

108. Sibley, L. D., Messina, M., and Niesman, I. R. Stable DNA transformation in the obligate intracellular parasite Toxoplasma gondii by complementation of tryptophan auxotrophy. Proc.Natl.Acad.Sci.U.S.A 1994; 91: 5508-5512.

109. Ikeda, K., Stuehler, T., and Meisterernst, M. The H1 and H2 regions of the activation domain of herpes simplex virion protein 16 stimulate transcription through distinct molecular mechanisms. Genes Cells 2002; 7: 49-58.

110. Naar, A. M., Beaurang, P. A., Zhou, S., Abraham, S., Solomon, W., and Tjian, R. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 1999; 398: 828-832.

111. Grondin, B., Cote, F., Bazinet, M., Vincent, M., and Aubry, M. Direct interaction of the KRAB/Cys2-His2 zinc finger protein ZNF74 with a hyperphosphorylated form of the RNA polymerase II largest subunit. J Biol.Chem. 1997; 272: 27877-27885.

112. Amorim, M. J. and Digard, P. Influenza A virus and the cell nucleus. Vaccine 2006; 24: 6651-6655.

113. Tamrakar, S., Kapasi, A. J., and Spector, D. H. Human cytomegalovirus infection induces specific hyperphosphorylation of the carboxyl-terminal domain of the large subunit of RNA polymerase II that is associated with changes in the abundance, activity, and localization of cdk9 and cdk7. J Virol. 2005; 79: 15477-15493.

114. Baek, M. C., Krosky, P. M., Pearson, A., and Coen, D. M. Phosphorylation of the RNA polymerase II carboxyl-terminal domain in human cytomegalovirus-infected cells and in vitro by the viral UL97 protein kinase. Virology 2004; 324: 184-193.

115. Lee, G., Wu, J., Luu, P., Ghazal, P., and Flores, O. Inhibition of the association of RNA polymerase II with the preinitiation complex by a viral transcriptional repressor. Proc.Natl.Acad.Sci.U.S.A 1996; 93: 2570-2575.

116. Knipe, D. M. The role of viral and cellular nuclear proteins in herpes simplex virus replication. Adv.Virus Res. 1989; 37: 85-123.

117. Durand, L. O., Advani, S. J., Poon, A. P., and Roizman, B. The carboxyl-terminal domain of RNA polymerase II is phosphorylated by a complex containing cdk9 and infected-cell protein 22 of herpes simplex virus 1. J Virol. 2005; 79: 6757-6762.

118. Romanos, M. A. and Hay, A. J. Identification of the influenza virus transcriptase by affinity-labeling with pyridoxal 5'-phosphate. Virology 1984; 132: 110-117.

119. Nelson, M. M., Jones, A. R., Carmen, J. C., Sinai, A. P., Burchmore, R., and Wastling, J. M. Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii. Infect.Immun. 2008; 76: 828-844.

120. De Clercq, E. 2001 ASPET Otto Krayer Award Lecture. Molecular targets for antiviral agents. J Pharmacol Exp.Ther. 2001; 297: 1-10.

121. Woyciniuk, P., Linder, M., and Scholtissek, C. The methyltransferase inhibitor Neplanocin A interferes with influenza virus replication by a mechanism different from that of 3-deazaadenosine. Virus Res. 1995; 35: 91-99.

122. Vogel, U., Kunerl, M., and Scholtissek, C. Influenza A virus late mRNAs are specifically retained in the nucleus in the presence of a methyltransferase or a protein kinase inhibitor. Virology 1994; 198: 227-233.

123. Minarovits, J. Epigenotypes of latent herpesvirus genomes. Curr.Top.Microbiol.Immunol. 2006; 310: 61-80.

124. Macnab, J. C., Adams, R. L., Rinaldi, A., Orr, A., and Clark, L. Hypomethylation of host cell DNA synthesized after infection or transformation of cells by herpes simplex virus. Mol Cell Biol. 1988; 8: 1443-1448.

125. Shimabukuro, M., Sasaki, T., Imamura, A., Tsujita, T., Fuke, C., Umekage, T. et al. Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: A potential link between epigenetics and schizophrenia. J Psychiatr.Res. 2007; 41: 1042-1046.

126. Shields, D. J., Lingrell, S., Agellon, L. B., Brosnan, J. T., and Vance, D. E. Localization-independent regulation of homocysteine secretion by phosphatidylethanolamine N-methyltransferase. J Biol.Chem. 2005; 280: 27339-27344.

127. Yassin, M. S., Cheng, H., Ekblom, J., and Oreland, L. Inhibitors of catecholamine metabolizing enzymes cause changes in S-adenosylmethionine and S-adenosylhomocysteine in the rat brain. Neurochem.Int. 1998; 32: 53-59.

128. Dawson, T. C., Beck, M. A., Kuziel, W. A., Henderson, F., and Maeda, N. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am.J Pathol. 2000; 156: 1951-1959.

129. Loeffler, J., Steffens, M., Arlt, E. M., Toliat, M. R., Mezger, M., Suk, A. et al. Polymorphisms in the genes encoding chemokine receptor 5, interleukin-10, and monocyte chemoattractant protein 1 contribute to cytomegalovirus reactivation and disease after allogeneic stem cell transplantation. J Clin.Microbiol 2006; 44: 1847-1850.

130. Varani, S., Frascaroli, G., Homman-Loudiyi, M., Feld, S., Landini, M. P., and Soderberg-Naucler, C. Human cytomegalovirus inhibits the migration of immature dendritic cells by down-regulating cell-surface CCR1 and CCR5. J Leukoc.Biol. 2005; 77: 219-228.

131. Frascaroli, G., Varani, S., Moepps, B., Sinzger, C., Landini, M. P., and Mertens, T. Human cytomegalovirus subverts the functions of monocytes, impairing chemokine-mediated migration and leukocyte recruitment. J Virol. 2006; 80: 7578-7589.

132. Cook, W. J., Kramer, M. F., Walker, R. M., Burwell, T. J., Holman, H. A., Coen, D. M. et al. Persistent expression of chemokine and chemokine receptor RNAs at primary and latent sites of herpes simplex virus 1 infection. Virol.J 2004; 1: 5.

133. Carr, D. J., Ash, J., Lane, T. E., and Kuziel, W. A. Abnormal immune response of CCR5-deficient mice to ocular infection with herpes simplex virus type 1. J Gen.Virol. 2006; 87: 489-499.

134. Lepej, S. Z., Rode, O. D., Jeren, T., Vince, A., Remenar, A., and Barsic, B. Increased expression of CXCR3 and CCR5 on memory CD4+ T-cells migrating into the cerebrospinal fluid of patients with neuroborreliosis: the role of CXCL10 and CXCL11. J Neuroimmunol. 2005; 163 : 128-134.

135. Aliberti, J., Valenzuela, J. G., Carruthers, V. B., Hieny, S., Andersen, J., Charest, H. et al. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat.Immunol. 2003; 4: 485-490.

136. Meyer, L., Magierowska, M., Hubert, J. B., Mayaux, M. J., Misrahi, M., Le Chenadec, J. et al. CCR5 delta32 deletion and reduced risk of toxoplasmosis in persons infected with human immunodeficiency virus type 1. The SEROCO-HEMOCO-SEROGEST Study Groups. J Infect.Dis. 1999; 180: 920-924.

137. Kindberg, E., Mickiene, A., Ax, C., Akerlind, B., Vene, S., Lindquist, L. et al. A Deletion in the Chemokine Receptor 5 (CCR5) Gene Is Associated with Tickborne Encephalitis. J Infect.Dis. 2008; 197: 266-269.

138. Bender, A., Amann, U., Jager, R., Nain, M., and Gemsa, D. Effect of granulocyte/macrophage colony-stimulating factor on human monocytes infected with influenza A virus. Enhancement of virus replication, cytokine release, and cytotoxicity. J Immunol. 1993; 151: 5416-5424.

139. Almeida-Porada, G., Porada, C. D., Shanley, J. D., and Ascensao, J. L. Altered production of GM-CSF and IL-8 in cytomegalovirus-infected, IL-1-primed umbilical cord endothelial cells. Exp.Hematol. 1997; 25: 1278-1285.

140. Woodroffe, S. B., Garnett, H. M., and Layton, J. E. Cytomegalovirus infection of vascular endothelial cells alters production of GM-CSF and G-CSF. Immunol.Cell Biol. 1994; 72: 187-190.

141. Lagneaux, L., Delforge, A., Snoeck, R., Stryckmans, P., and Bron, D. Decreased production of cytokines after cytomegalovirus infection of marrow-derived stromal cells. Exp.Hematol. 1994; 22 : 26-30.

142. Iida, J., Saiki, I., Ishihara, C., and Azuma, I. Protective activity of recombinant cytokines against Sendai virus and herpes simplex virus (HSV) infections in mice. Vaccine 1989; 7: 229-233.

143. Van Damme, J., Schaafsma, M. R., Fibbe, W. E., Falkenburg, J. H., Opdenakker, G., and Billiau, A. Simultaneous production of interleukin 6, interferon-beta and colony-stimulating activity by fibroblasts after viral and bacterial infection. Eur.J Immunol. 1989; 19: 163-168.

144. Schempp, C., Owsianowski, M., Lange, R., and Gollnick, H. Comparison of Borrelia burgdorferi ultrasonicate and whole B, burgdorferi cells as a stimulus for T-cell proliferation and GM-CSF secretion in vitro. Zentralbl.Bakteriol. 1993; 279: 417-425.

145. Filgueira, L., Nestle, F. O., Rittig, M., Joller, H. I., and Groscurth, P. Human dendritic cells phagocytose and process Borrelia burgdorferi. J Immunol. 1996; 157: 2998-3005.

146. Rittig, M. G., Jagoda, J. C., Wilske, B., Murgia, R., Cinco, M., Repp, R. et al. Coiling phagocytosis discriminates between different spirochetes and is enhanced by phorbol myristate acetate and granulocyte-macrophage colony-stimulating factor. Infect.Immun. 1998; 66: 627-635.

147. Izycka, A., Jablonska, E., Zajkowska, J., and Hermanowska-Szpakowicz, T. [INF-gamma and GM-CSF concentrations in serum of patients with Lyme disease]. Pol.Merkur Lekarski. 2002; 13: 459-461.

148. Fischer, H. G., Nitzgen, B., Reichmann, G., and Hadding, U. Cytokine responses induced by Toxoplasma gondii in astrocytes and microglial cells. Eur.J Immunol. 1997; 27: 1539-1548.

149. Channon, J. Y., Miselis, K. A., Minns, L. A., Dutta, C., and Kasper, L. H. Toxoplasma gondii induces granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor secretion by human fibroblasts: implications for neutrophil apoptosis. Infect.Immun. 2002; 70: 6048-6057.

150. Benedetto, N., Folgore, A., Gorga, F., Finamore, E., Rao, M., and Galdiero, F. Interactions between cytokines and growth hormone for resistance to experimental. New Microbiol. 2000; 23: 167-183.

151. Mevelec, M. N., Bout, D., Desolme, B., Marchand, H., Magne, R., Bruneel, O. et al. Evaluation of protective effect of DNA vaccination with genes encoding antigens GRA4 and SAG1 associated with GM-CSF plasmid, against acute, chronical and congenital toxoplasmosis in mice. Vaccine 2005; 23: 4489-4499.

152. Ayukawa, H., Matsubara, T., Kaneko, M., Hasegawa, M., Ichiyama, T., and Furukawa, S. Expression of CTLA-4 (CD152) in peripheral blood T cells of children with influenza virus infection including encephalopathy in comparison with respiratory syncytial virus infection. Clin.Exp.Immunol. 2004; 137: 151-155.

153. Edelmann, K. H. and Wilson, C. B. Role of CD28/CD80-86 and CD40/CD154 costimulatory interactions in host defense to primary herpes simplex virus infection. J Virol. 2001; 75: 612-621.

154. Kisand, K. E., Prukk, T., Kisand, K. V., Luus, S. M., Kalbe, I., and Uibo, R. Propensity to excessive proinflammatory response in chronic Lyme borreliosis. APMIS 2007; 115: 134-141.

155. Hunter, C. A., Ellis-Neyer, L., Gabriel, K. E., Kennedy, M. K., Grabstein, K. H., Linsley, P. S. et al. The role of the CD28/B7 interaction in the regulation of NK cell responses during infection with Toxoplasma gondii. J Immunol. 1997; 158: 2285-2293.

156. Wieland, G. D., Nehmann, N., Muller, D., Eibel, H., Siebenlist, U., Suhnel, J. et al. Early growth response proteins EGR-4 and EGR-3 interact with immune inflammatory mediators NF-kappaB p50 and p65. J Cell Sci. 2005; 118: 3203-3212.

157. Luciano, R. L. and Wilson, A. C. HCF-1 functions as a coactivator for the zinc finger protein Krox20. J Biol.Chem. 2003; 278: 51116-51124.

158. Safford, M., Collins, S., Lutz, M. A., Allen, A., Huang, C. T., Kowalski, J. et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat.Immunol. 2005; 6: 472-480.

159. Van Reeth, K. Cytokines in the pathogenesis of influenza. Vet.Microbiol. 2000; 74: 109-116.

160. Schmitz, N., Kurrer, M., Bachmann, M. F., and Kopf, M. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol. 2005; 79: 6441-6448.

161. Yurochko, A. D. and Huang, E. S. Human cytomegalovirus binding to human monocytes induces immunoregulatory gene expression. J Immunol. 1999; 162: 4806-4816.

162. Listman, J. A., Race, J. E., Walker-Kopp, N., Unlu, S., and Auron, P. E. Inhibition of IL-1beta transcription by peptides derived from the hCMV IE2 transactivator. Mol Immunol. 2008;

163. Ben Hur, T., Cialic, R., and Weidenfeld, J. Virus and host factors that mediate the clinical and behavioral signs of experimental herpetic encephalitis. A short auto-review. Acta Microbiol.Immunol.Hung. 2003; 50: 443-451.

164. Lokensgard, J. R., Hu, S., Sheng, W., vanOijen, M., Cox, D., Cheeran, M. C. et al. Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol. 2001; 7: 208-219.

165. Hahn, G., Jores, R., and Mocarski, E. S. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc.Natl.Acad.Sci.U.S.A 1998; 95: 3937-3942.

166. Ritter, T., Brandt, C., Prosch, S., Vergopoulos, A., Vogt, K., Kolls, J. et al. Stimulatory and inhibitory action of cytokines on the regulation of hCMV-IE promoter activity in human endothelial cells. Cytokine 2000; 12: 1163-1170.

167. Miller, L. C., Isa, S., Vannier, E., Georgilis, K., Steere, A. C., and Dinarello, C. A. Live Borrelia burgdorferi preferentially activate interleukin-1 beta gene expression and protein synthesis over the interleukin-1 receptor antagonist. J Clin.Invest 1992; 90: 906-912.

168. Schluter, D., Deckert, M., Hof, H., and Frei, K. Toxoplasma gondii infection of neurons induces neuronal cytokine and chemokine production, but gamma interferon- and tumor necrosis factor-stimulated neurons fail to inhibit the invasion and growth of T. gondii. Infect.Immun. 2001; 69: 7889-7893.

169. Brunton, C. L., Wallace, G. R., Graham, E., and Stanford, M. R. The effect of cytokines on the replication of T. gondii within rat retinal vascular endothelial cells. J Neuroimmunol. 2000; 102: 182-188.

170. Dimier, I. H. and Bout, D. T. Co-operation of interleukin-1 beta and tumour necrosis factor-alpha in the activation of human umbilical vein endothelial cells to inhibit Toxoplasma gondii replication. Immunology 1993; 79: 336-338.

171. Chang, H. R., Grau, G. E., and Pechere, J. C. Role of TNF and IL-1 in infections with Toxoplasma gondii. Immunology 1990; 69: 33-37.

172. Swiergiel, A. H., Smagin, G. N., Johnson, L. J., and Dunn, A. J. The role of cytokines in the behavioral responses to endotoxin and influenza virus infection in mice: effects of acute and chronic administration of the interleukin-1-receptor antagonist (IL-1ra). Brain Res. 1997; 776: 96-104.

173. Hurme, M. and Helminen, M. Resistance to human cytomegalovirus infection may be influenced by genetic polymorphisms of the tumour necrosis factor-alpha and interleukin-1 receptor antagonist genes. Scand.J Infect.Dis. 1998; 30: 447-449.

174. Kline, J. N., Geist, L. J., Monick, M. M., Stinski, M. F., and Hunninghake, G. W. Regulation of expression of the IL-1 receptor antagonist (IL-1ra) gene by products of the human cytomegalovirus immediate early genes. J Immunol. 1994; 152: 2351-2357.

175. Biswas, P. S., Banerjee, K., Zheng, M., and Rouse, B. T. Counteracting corneal immunoinflammatory lesion with interleukin-1 receptor antagonist protein. J Leukoc.Biol. 2004; 76: 868-875.

176. Biswas, P. S., Banerjee, K., Kim, B., and Rouse, B. T. Mice transgenic for IL-1 receptor antagonist protein are resistant to herpetic stromal keratitis: possible role for IL-1 in herpetic stromal keratitis pathogenesis. J Immunol. 2004; 172: 3736-3744.

177. Porat, R., Poutsiaka, D. D., Miller, L. C., Granowitz, E. V., and Dinarello, C. A. Interleukin-1 (IL-1) receptor blockade reduces endotoxin and Borrelia burgdorferi-stimulated IL-8 synthesis in human mononuclear cells. FASEB J 1992; 6: 2482-2486.

178. Del, Gobbo, V, Villani, N., Marini, S., Balestra, E., and Calio, R. Suppressor cells induced by influenza virus inhibit interleukin-2 production in mice. Immunology 1990; 69: 454-459.

179. Geist, L. J., Monick, M. M., Stinski, M. F., and Hunninghake, G. W. The immediate early genes of human cytomegalovirus upregulate expression of the interleukin-2 and interleukin-2 receptor genes. Am.J Respir.Cell Mol Biol. 1991; 5: 292-296.

180. Geist, L. J., Monick, M. M., Stinski, M. F., and Hunninghake, G. W. Cytomegalovirus immediate early genes prevent the inhibitory effect of cyclosporin A on interleukin 2 gene transcription. J Clin.Invest 1992; 90: 2136-2140.

181. Braun, R. W. and Kirchner, H. T lymphocytes activated by interleukin 2 alone acquire permissiveness for replication of herpes simplex virus. Eur.J Immunol. 1986; 16: 709-711.

182. Zeidner, N., Dreitz, M., Belasco, D., and Fish, D. Suppression of acute Ixodes scapularis-induced Borrelia burgdorferi infection using tumor necrosis factor-alpha, interleukin-2, and interferon-gamma. J Infect.Dis. 1996; 173: 187-195.

183. Villegas, E. N., Lieberman, L. A., Carding, S. R., and Hunter, C. A. Susceptibility of interleukin-2-deficient mice to Toxoplasma gondii is associated with a defect in the production of gamma interferon. Infect.Immun. 2002; 70: 4757-4761.

184. Chan, W. L., Ziltener, H. J., and Liew, F. Y. Interleukin-3 protects mice from acute herpes simplex virus infection. Immunology 1990; 71: 358-363.

185. Benedetto, N., Folgore, A., Romano, Carratelli C., and Galdiero, F. Effects of cytokines and prolactin on the replication of Toxoplasma gondii in murine microglia. Eur.Cytokine Netw. 2001; 12: 348-358.

186. Moran, T. M., Isobe, H., Fernandez-Sesma, A., and Schulman, J. L. Interleukin-4 causes delayed virus clearance in influenza virus-infected mice. J Virol. 1996; 70: 5230-5235.

187. Horohov, D. W., Crim, J. A., Smith, P. L., and Siegel, J. P. IL-4 (B cell-stimulatory factor 1) regulates multiple aspects of influenza virus-specific cell-mediated immunity. J Immunol. 1988; 141: 4217-4223.

188. Dix, R. and Cousins, S. Murine cytomegalovirus retinitis during MAIDS: Susceptibility correlates with elevated intraocular levels of interleukin-4 mRNA. Curr.Eye Res. 2003; 26: 211-217.

189. Kitajima, H., Okubo, Y., Honda, J., Yonemitsu, J., Yoshida, N., Fumimori, T. et al. Interleukin-4 is needed for the infection of monocytes by human cytomegalovirus. Intervirology 2001; 44: 264-270.

190. Kallas, E. G., Reynolds, K., Andrews, J., Fitzgerald, T., Kasper, M., Menegus, M. et al. Cytomegalovirus-specific IFNgamma and IL-4 are produced by antigen expanded human blood lymphocytes from seropositive volunteers. Immunol.Lett. 1998; 64: 63-69.

191. Widhe, M., Jarefors, S., Ekerfelt, C., Vrethem, M., Bergstrom, S., Forsberg, P. et al. Borrelia-specific interferon-gamma and interleukin-4 secretion in cerebrospinal fluid and blood during Lyme borreliosis in humans: association with clinical outcome. J Infect.Dis. 2004; 189: 1881-1891.

192. Keane-Myers, A., Maliszewski, C. R., Finkelman, F. D., and Nickell, S. P. Recombinant IL-4 treatment augments resistance to Borrelia burgdorferi infections in both normal susceptible and antibody-deficient susceptible mice. J Immunol. 1996; 156: 2488-2494.

193. Swierczynski, B., Bessieres, M. H., Cassaing, S., Guy, S., Oswald, I., Seguela, J. P. et al. Inhibitory activity of anti-interleukin-4 and anti-interleukin-10 antibodies on Toxoplasma gondii proliferation in mouse peritoneal macrophages cocultured with splenocytes from infected mice. Parasitol.Res. 2000; 86: 151-157.

194. Rangel-Moreno, J., Moyron-Quiroz, J., Kusser, K., Hartson, L., Nakano, H., and Randall, T. D. Role of CXC chemokine ligand 13, CC chemokine ligand (CCL) 19, and CCL21 in the organization and function of nasal-associated lymphoid tissue. J Immunol. 2005; 175: 4904-4913.

195. Lund, F. E., Partida-Sanchez, S., Lee, B. O., Kusser, K. L., Hartson, L., Hogan, R. J. et al. Lymphotoxin-alpha-deficient mice make delayed, but effective, T and B cell responses to influenza. J Immunol. 2002; 169: 5236-5243.

196. Sedger, L. M., Hou, S., Osvath, S. R., Glaccum, M. B., Peschon, J. J., van Rooijen, N. et al. Bone marrow B cell apoptosis during in vivo influenza virus infection requires TNF-alpha and lymphotoxin-alpha. J Immunol. 2002; 169: 6193-6201.

197. Iversen, A. C., Norris, P. S., Ware, C. F., and Benedict, C. A. Human NK cells inhibit cytomegalovirus replication through a noncytolytic mechanism involving lymphotoxin-dependent induction of IFN-beta. J Immunol. 2005; 175: 7568-7574.

198. Mauri, D. N., Ebner, R., Montgomery, R. I., Kochel, K. D., Cheung, T. C., Yu, G. L. et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity. 1998; 8: 21-30.

199. Kumaraguru, U., Davis, I. A., Deshpande, S., Tevethia, S. S., and Rouse, B. T. Lymphotoxin alpha-/- mice develop functionally impaired CD8+ T cell responses and fail to contain virus infection of the central nervous system. J Immunol. 2001; 166: 1066-1074.

200. Schluter, D., Kwok, L. Y., Lutjen, S., Soltek, S., Hoffmann, S., Korner, H. et al. Both lymphotoxin-alpha and TNF are crucial for control of Toxoplasma gondii in the central nervous system. J Immunol. 2003; 170: 6172-6182.

201. Kaiser, L., Fritz, R. S., Straus, S. E., Gubareva, L., and Hayden, F. G. Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. J Med Virol. 2001; 64: 262-268.

202. Tumpey, T. M., Cheng, H., Yan, X. T., Oakes, J. E., and Lausch, R. N. Chemokine synthesis in the HSV-1-infected cornea and its suppression by interleukin-10. J Leukoc.Biol. 1998; 63: 486-492.

203. Marques, C. P., Hu, S., Sheng, W., Cheeran, M. C., Cox, D., and Lokensgard, J. R. Interleukin-10 attenuates production of HSV-induced inflammatory mediators by human microglia. Glia 2004; 47: 358-366.

204. Hurme, M., Haanpaa, M., Nurmikko, T., Wang, X. Y., Virta, M., Pessi, T. et al. IL-10 gene polymorphism and herpesvirus infections. J Med Virol. 2003; 70 Suppl 1: S48-S50.

205. Akaboshi, I., Nagayoshi, I., Omura, M., and Iwaki, K. Elevated serum levels of interleukin-10 in children with acute rubella infection. Scand.J Infect.Dis. 2001; 33: 462-465.

206. Khan, I. A., Matsuura, T., and Kasper, L. H. IL-10 mediates immunosuppression following primary infection with Toxoplasma gondii in mice. Parasite Immunol. 1995; 17: 185-195.

207. Siren, J., Sareneva, T., Pirhonen, J., Strengell, M., Veckman, V., Julkunen, I. et al. Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen.Virol. 2004; 85: 2357-2364.

208. Cosman, D., Mullberg, J., Sutherland, C. L., Chin, W., Armitage, R., Fanslow, W. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 2001; 14: 123-133.

209. Wu, J., Chalupny, N. J., Manley, T. J., Riddell, S. R., Cosman, D., and Spies, T. Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J Immunol. 2003; 170: 4196-4200.

210. Vales-Gomez, M., Winterhalter, A., Roda-Navarro, P., Zimmermann, A., Boyle, L., Hengel, H. et al. The human cytomegalovirus glycoprotein UL16 traffics through the plasma membrane and the nuclear envelope. Cell Microbiol. 2006; 8: 581-590.

211. Stern-Ginossar, N., Elefant, N., Zimmermann, A., Wolf, D. G., Saleh, N., Biton, M. et al. Host immune system gene targeting by a viral miRNA. Science 2007; 317: 376-381.

212. Shirts, B. H., Kim, J. J., Reich, S., Dickerson, F. B., Yolken, R. H., Devlin, B. et al. Polymorphisms in MICB are associated with human herpes virus seropositivity and schizophrenia risk. Schizophr.Res. 2007; 94: 342-353.

213. Carr, J. A., Rogerson, J. A., Mulqueen, M. J., Roberts, N. A., and Nash, A. A. The role of endogenous interleukin-12 in resistance to murine cytomegalovirus (MCMV) infection and a novel action for endogenous IL-12 p40. J Interferon Cytokine Res. 1999; 19: 1145-1152.

214. Al Khatib, K., Campbell, I. L., and Carr, D. J. Resistance to ocular herpes simplex virus type 1 infection in IL-12 transgenic mice. J Neuroimmunol. 2002; 132: 41-48.

215. Vossenkamper, A., Struck, D., Alvarado-Esquivel, C., Went, T., Takeda, K., Akira, S. et al. Both IL-12 and IL-18 contribute to small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii, but IL-12 is dominant over IL-18 in parasite control. Eur.J Immunol. 2004; 34: 3197-3207.

216. Van Der Sluijs, K. F., Van Elden, L. J., Arens, R., Nijhuis, M., Schuurman, R., Florquin, S. et al. Enhanced viral clearance in interleukin-18 gene-deficient mice after pulmonary infection with influenza A virus. Immunology 2005; 114: 112-120.

217. Liu, B., Mori, I., Hossain, M. J., Dong, L., Takeda, K., and Kimura, Y. Interleukin-18 improves the early defence system against influenza virus infection by augmenting natural killer cell-mediated cytotoxicity. J Gen.Virol. 2004; 85: 423-428.

218. Andoniou, C. E., van Dommelen, S. L., Voigt, V., Andrews, D. M., Brizard, G., Asselin-Paturel, C. et al. Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat.Immunol. 2005; 6: 1011-1019.

219. Fujioka, N., Akazawa, R., Ohashi, K., Fujii, M., Ikeda, M., and Kurimoto, M. Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J Virol. 1999; 73: 2401-2409.

220. Reading, P. C., Whitney, P. G., Barr, D. P., Wojtasiak, M., Mintern, J. D., Waithman, J. et al. IL-18, but not IL-12, regulates NK cell activity following intranasal herpes simplex virus type 1 infection. J Immunol. 2007; 179: 3214-3221.

221. Cai, G., Radzanowski, T., Villegas, E. N., Kastelein, R., and Hunter, C. A. Identification of STAT4-dependent and independent mechanisms of resistance to Toxoplasma gondii. J Immunol. 2000; 165: 2619-2627.

222. Cai, G., Kastelein, R., and Hunter, C. A. Interleukin-18 (IL-18) enhances innate IL-12-mediated resistance to Toxoplasma gondii. Infect.Immun. 2000; 68: 6932-6938.

223. Shirts, B. H., Wood, J., Yolken, R. H., and Nimgaonkar, V. L. Comprehensive evaluation of positional candidates in the IL-18 pathway reveals suggestive associations with schizophrenia and herpes virus seropositivity. Am.J Med Genet.B Neuropsychiatr.Genet. 2007;

224. Sladkova, T. and Kostolansky, F. The role of cytokines in the immune response to influenza A virus infection. Acta Virol. 2006; 50: 151-162.

225. Palucka, A. K., Blanck, J. P., Bennett, L., Pascual, V., and Banchereau, J. Cross-regulation of TNF and IFN-alpha in autoimmune diseases. Proc.Natl.Acad.Sci.U.S.A 2005; 102: 3372-3377.

226. Poole, E., King, C. A., Sinclair, J. H., and Alcami, A. The UL144 gene product of human cytomegalovirus activates NFkappaB via a TRAF6-dependent mechanism. EMBO J 2006; 25: 4390-4399.

227. Feduchi, E. and Carrasco, L. Mechanism of inhibition of HSV-1 replication by tumor necrosis factor and interferon gamma. Virology 1991; 180: 822-825.

228. Walev, I., Podlech, J., and Falke, D. Enhancement by TNF-alpha of reactivation and replication of latent herpes simplex virus from trigeminal ganglia of mice. Arch.Virol. 1995; 140: 987-992.

229. Lundberg, P., Welander, P. V., Edwards, C. K., III, van Rooijen, N., and Cantin, E. Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. J Virol. 2007; 81: 1451-1460.

230. Radolf, J. D., Norgard, M. V., Brandt, M. E., Isaacs, R. D., Thompson, P. A., and Beutler, B. Lipoproteins of Borrelia burgdorferi and Treponema pallidum activate cachectin/tumor necrosis factor synthesis. Analysis using a CAT reporter construct. J Immunol. 1991; 147: 1968-1974.

231. Defosse, D. L. and Johnson, R. C. In vitro and in vivo induction of tumor necrosis factor alpha by Borrelia burgdorferi. Infect.Immun. 1992; 60: 1109-1113.

232. Ramesh, G. and Philipp, M. T. Pathogenesis of Lyme neuroborreliosis: mitogen-activated protein kinases Erk1, Erk2, and p38 in the response of astrocytes to Borrelia burgdorferi lipoproteins. Neurosci Lett. 2005; 384: 112-116.

233. Cassiani-Ingoni, R., Cabral, E. S., Lunemann, J. D., Garza, Z., Magnus, T., Gelderblom, H. et al. Borrelia burgdorferi Induces TLR1 and TLR2 in human microglia and peripheral blood monocytes but differentially regulates HLA-class II expression. J Neuropathol.Exp.Neurol. 2006; 65: 540-548.

234. Yrjanainen, H., Hytonen, J., Song, X. Y., Oksi, J., Hartiala, K., and Viljanen, M. K. Anti-tumor necrosis factor-alpha treatment activates Borrelia burgdorferi spirochetes 4 weeks after ceftriaxone treatment in C3H/He mice. J Infect.Dis. 2007; 195: 1489-1496.

235. Johnson, L. L. A protective role for endogenous tumor necrosis factor in Toxoplasma gondii infection. Infect.Immun. 1992; 60: 1979-1983.

236. Butcher, B. A., Kim, L., Panopoulos, A. D., Watowich, S. S., Murray, P. J., and Denkers, E. Y. IL-10-independent STAT3 activation by Toxoplasma gondii mediates suppression of IL-12 and TNF-alpha in host macrophages. J Immunol. 2005; 174: 3148-3152.

237. Denkers, E. Y., Kim, L., and Butcher, B. A. In the belly of the beast: subversion of macrophage proinflammatory signalling cascades during Toxoplasma gondii infection. Cell Microbiol. 2003; 5: 75-83.

238. Butcher, B. A., Kim, L., Johnson, P. F., and Denkers, E. Y. Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NF-kappa B. J Immunol. 2001; 167: 2193-2201.

239. Kim, L., Butcher, B. A., and Denkers, E. Y. Toxoplasma gondii interferes with lipopolysaccharide-induced mitogen-activated protein kinase activation by mechanisms distinct from endotoxin tolerance. J Immunol. 2004; 172: 3003-3010.

240. Fellerhoff, B., Laumbacher, B., Mueller, N., Gu, S., and Wank, R. Associations between Chlamydophila infections, schizophrenia and risk of HLA-A10. Mol Psychiatry 2007; 12: 264-272.

241. Chen, B. P. and Parham, P. Direct binding of influenza peptides to class I HLA molecules. Nature 1989; 337: 743-745.

242. Burrows, J. M., Wynn, K. K., Tynan, F. E., Archbold, J., Miles, J. J., Bell, M. J. et al. The impact of HLA-B micropolymorphism outside primary peptide anchor pockets on the CTL response to CMV. Eur.J Immunol. 2007; 37: 946-953.

243. Lekstrom-Himes, J. A., Hohman, P., Warren, T., Wald, A., Nam, J. M., Simonis, T. et al. Association of major histocompatibility complex determinants with the development of symptomatic and asymptomatic genital herpes simplex virus type 2 infections. J Infect.Dis. 1999; 179: 1077-1085.

244. Middleton, D., Hutchison, T. H., and Lynd, J. HLA antigen frequency in erythema multiforme and in recurrent herpes simplex. Tissue Antigens 1983; 21: 264-267.

245. Kato, S., Kimura, M., Takakura, I., Tsuji, K., and Ueda, K. HLA-linked genetic control in natural rubella infection. Tissue Antigens 1980; 15: 86-89.

246. Kato, S., Kimura, M., Takakura, I., Sakakibara, T., Inouye, H., and Tsuji, K. Possible associations between HLA antigens and the immune responsiveness to attenuated rubella vaccine. Tissue Antigens 1978; 11: 475-478.

247. Brown, C. R., David, C. S., Khare, S. J., and McLeod, R. Effects of human class I transgenes on Toxoplasma gondii cyst formation. J Immunol. 1994; 152: 4537-4541.

248. Hennecke, J. and Wiley, D. C. Structure of a complex of the human alpha/beta T cell receptor (TCR) HA1.7, influenza hemagglutinin peptide, and major histocompatibility complex class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): insight into TCR cross-restriction and alloreactivity. J Exp.Med. 2002; 195: 571-581.

249. Wedderburn, L. R., Searle, S. J., Rees, A. R., Lamb, J. R., and Owen, M. J. Mapping T cell recognition: the identification of a T cell receptor residue critical to the specific interaction with an influenza hemagglutinin peptide. Eur.J Immunol. 1995; 25: 1654-1662.

250. Nepom, G. T., Domeier, M. E., Ou, D., Kovats, S., Mitchell, L. A., and Tingle, A. J. Recognition of contiguous allele-specific peptide elements in the rubella virus E1 envelope protein. Vaccine 1997; 15: 648-652.

251. Steere, A. C., Falk, B., Drouin, E. E., Baxter-Lowe, L. A., Hammer, J., and Nepom, G. T. Binding of outer surface protein A and human lymphocyte function-associated antigen 1 peptides to HLA-DR molecules associated with antibiotic treatment-resistant Lyme arthritis. Arthritis Rheum. 2003; 48: 534-540.

252. Willett, T. A., Meyer, A. L., Brown, E. L., and Huber, B. T. An effective second-generation outer surface protein A-derived Lyme vaccine that eliminates a potentially autoreactive T cell epitope. Proc.Natl.Acad.Sci.U.S.A 2004; 101: 1303-1308.

253. Guil, S., Rodriguez-Castro, M., Aguilar, F., Villasevil, E. M., Anton, L. C., and Del Val, M. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental. J Biol.Chem. 2006; 281: 39925-39934.

254. Buchweitz, J. P., Karmaus, P. W., Harkema, J. R., Williams, K. J., and Kaminski, N. E. Modulation Of Airway Responses To Influenza A/PR/8/34 By Delta-9-Tetrahydrocannabinol In C57BL/6 Mice. J Pharmacol Exp.Ther. 2007;

255. Morahan, P. S., Klykken, P. C., Smith, S. H., Harris, L. S., and Munson, A. E. Effects of cannabinoids on host resistance to Listeria monocytogenes and herpes simplex virus. Infect.Immun. 1979; 23: 670-674.

256. Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Huang, H., Oishi, K., Mori, S. et al. Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: Implications for genesis of neurodevelopmental disorders. Schizophr.Res. 2008; 99: 56-70.

257. Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A. D., Stroud, J. C. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006; 126: 375-387.

258. Cai, J., Chen, Y., Seth, S., Furukawa, S., Compans, R. W., and Jones, D. P. Inhibition of influenza infection by glutathione. Free Radic.Biol.Med. 2003; 34: 928-936.

259. Vossen, R. C., Persoons, M. C., Slobbe-van Drunen, M. E., Bruggeman, C. A., and Dam-Mieras, M. C. Intracellular thiol redox status affects rat cytomegalovirus infection of vascular cells. Virus Res. 1997; 48: 173-183.

260. Persson, M., Brantefjord, M., Liljeqvist, J. A., Bergstrom, T., Hansson, E., and Ronnback, L. Microglial GLT-1 is upregulated in response to herpes simplex virus infection to provide an antiviral defence via glutathione. Glia 2007; 55: 1449-1458.

261. Palamara, A. T., Perno, C. F., Ciriolo, M. R., Dini, L., Balestra, E., D'Agostini, C. et al. Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication. Antiviral Res. 1995; 27: 237-253.

262. Vogel, J. U., Cinatl, J., Dauletbaev, N., Buxbaum, S., Treusch, G., Cinatl, J., Jr. et al. Effects of S-acetylglutathione in cell and animal model of herpes simplex virus type 1 infection. Med Microbiol.Immunol.(Berl) 2005; 194: 55-59.

263. Stommel, E. W., Cho, E., Steide, J. A., Seguin, R., Barchowsky, A., Schwartzman, J. D. et al. Identification and role of thiols in Toxoplasma gondii egress. Exp.Biol.Med (Maywood.) 2001; 226: 229-236.

264. Jensen, L., Heegaard, P. M., and Lind, P. A study of virulence parameters for Toxoplasma gondii infections in mice. Parasitol.Res. 1998; 84: 382-387.

265. Raviv, Y., Puri, A., and Blumenthal, R. P-glycoprotein-overexpressing multidrug-resistant cells are resistant to infection by enveloped viruses that enter via the plasma membrane. FASEB J 2000; 14: 511-515.

266. Varga, A., Sokolowska-Kohler, W., Presber, W., Von, Baehr, V, Von Baehr, R., Lucius, R. et al. Toxoplasma infection and cell free extract of the parasites are able to reverse multidrug resistance of mouse lymphoma and human gastric cancer cells in vitro. Anticancer Res. 1999; 19: 1317-1324.

267. Fatemi, S. H., Sidwell, R., Akhter, P., Sedgewick, J., Thuras, P., Bailey, K. et al. Human influenza viral infection in utero increases nNOS expression in hippocampi of neonatal mice. Synapse 1998; 29: 84-88.

268. Tanaka, K. and Noda, S. Role of nitric oxide in murine cytomegalovirus (MCMV) infection. Histol.Histopathol. 2001; 16: 937-944.

269. Haas, J., Meyding-Lamade, U., Fath, A., Stingele, K., Storch-Hagenlocher, B., and Wildemann, B. Acyclovir treatment of experimentally induced herpes simplex virus encephalitis: monitoring the changes in immunologic NO synthase expression and viral load within brain tissue of SJL mice. Neurosci Lett. 1999; 264: 129-132.

270. Colasanti, M., Persichini, T., Venturini, G., and Ascenzi, P. S-nitrosylation of viral proteins: molecular bases for antiviral effect of nitric oxide. IUBMB.Life 1999; 48: 25-31.

271. Lusitani, D., Malawista, S. E., and Montgomery, R. R. Borrelia burgdorferi are susceptible to killing by a variety of human polymorphonuclear leukocyte components. J Infect.Dis. 2002; 185: 797-804.

272. Zheng, C. and Lin, J. [The role of L-arginine and L-citrulline in activated macrophage against Toxoplasma gondii infection in vitro]. Zhongguo Ji.Sheng Chong.Xue.Yu Ji.Sheng Chong.Bing.Za Zhi. 1998; 16: 326-330.

273. Carey, M. A., Bradbury, J. A., Seubert, J. M., Langenbach, R., Zeldin, D. C., and Germolec, D. R. Contrasting effects of cyclooxygenase-1 (COX-1) and COX-2 deficiency on the host response to influenza A viral infection. J Immunol. 2005; 175: 6878-6884.

274. Hooks, J. J., Chin, M. S., Srinivasan, K., Momma, Y., Hooper, L. C., Nagineni, C. N. et al. Human cytomegalovirus induced cyclooxygenase-2 in human retinal pigment epithelial cells augments viral replication through a prostaglandin pathway. Microbes.Infect. 2006; 8: 2236-2244.

275. Martelius, T. J., Wolff, H., Bruggeman, C. A., Hockerstedt, K. A., and Lautenschlager, I. T. Induction of cyclo-oxygenase-2 by acute liver allograft rejection and cytomegalovirus infection in the rat. Transpl.Int. 2002; 15: 610-614.

276. Harkins, L., Volk, A. L., Samanta, M., Mikolaenko, I., Britt, W. J., Bland, K. I. et al. Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 2002; 360: 1557-1563.

277. Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T., and Shenk, T. Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc.Natl.Acad.Sci.U.S.A 1998; 95: 14470-14475.

278. Zhu, H., Cong, J. P., Yu, D., Bresnahan, W. A., and Shenk, T. E. Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc.Natl.Acad.Sci.U.S.A 2002; 99: 3932-3937.

279. Speir, E., Yu, Z. X., Ferrans, V. J., Huang, E. S., and Epstein, S. E. Aspirin attenuates cytomegalovirus infectivity and gene expression mediated by cyclooxygenase-2 in coronary artery smooth muscle cells. Circ.Res. 1998; 83: 210-216.

280. Reynolds, A. E. and Enquist, L. W. Biological interactions between herpesviruses and cyclooxygenase enzymes. Rev.Med Virol. 2006; 16: 393-403.

281. Rasley, A., Marriott, I., Halberstadt, C. R., Bost, K. L., and Anguita, J. Substance P augments Borrelia burgdorferi-induced prostaglandin E2 production by murine microglia. J Immunol. 2004; 172: 5707-5713.

282. Kim, J. Y., Ahn, M. H., Song, H. O., Choi, J. H., Ryu, J. S., Min, D. Y. et al. Involvement of MAPK activation in chemokine or COX-2 productions by Toxoplasma gondii. Korean J Parasitol. 2006; 44: 197-207.

283. Choi, A. M., Knobil, K., Otterbein, S. L., Eastman, D. A., and Jacoby, D. B. Oxidant stress responses in influenza virus pneumonia: gene expression and transcription factor activation. Am.J Physiol 1996; 271: L383-L391.

284. Jacoby, D. B. and Choi, A. M. Influenza virus induces expression of antioxidant genes in human epithelial cells. Free Radic.Biol.Med 1994; 16: 821-824.

285. Suzuki, H., Matsumori, A., Matoba, Y., Kyu, B. S., Tanaka, A., Fujita, J. et al. Enhanced expression of superoxide dismutase messenger RNA in viral myocarditis. An SH-dependent reduction of its expression and myocardial injury. J Clin.Invest 1993; 91: 2727-2733.

286. Sidwell, R. W., Huffman, J. H., Bailey, K. W., Wong, M. H., Nimrod, A., and Panet, A. Inhibitory effects of recombinant manganese superoxide dismutase on influenza virus infections in mice. Antimicrob.Agents Chemother. 1996; 40: 2626-2631.

287. Nichols, T. L., Whitehouse, C. A., and Austin, F. E. Transcriptional analysis of a superoxide dismutase gene of Borrelia burgdorferi. FEMS Microbiol.Lett. 2000; 183: 37-42.

288. Blader, I. J., Manger, I. D., and Boothroyd, J. C. Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. J Biol.Chem. 2001; 276: 24223-24231.

289. Brydges, S. D. and Carruthers, V. B. Mutation of an unusual mitochondrial targeting sequence of SODB2 produces multiple targeting fates in Toxoplasma gondii. J Cell Sci. 2003; 116: 4675-4685.

290. Hale, B. G., Jackson, D., Chen, Y. H., Lamb, R. A., and Randall, R. E. Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling. Proc.Natl.Acad.Sci.U.S.A 2006; 103: 14194-14199.

291. Ehrhardt, C., Wolff, T., Pleschka, S., Planz, O., Beermann, W., Bode, J. G. et al. Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J Virol. 2007; 81: 3058-3067.

292. Cobbs, C. S., Soroceanu, L., Denham, S., Zhang, W., Britt, W. J., Pieper, R. et al. Human cytomegalovirus induces cellular tyrosine kinase signaling and promotes glioma cell invasiveness. J Neurooncol. 2007;

293. Yu, Y. and Alwine, J. C. Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3'-OH kinase pathway and the cellular kinase Akt. J Virol. 2002; 76: 3731-3738.

294. Smith, C. C. The herpes simplex virus type 2 protein ICP10PK: a master of versatility. Front Biosci. 2005; 10 : 2820-2831.

295. Cooray, S., Jin, L., and Best, J. M. The involvement of survival signaling pathways in rubella-virus induced apoptosis. Virol.J 2005; 2: 1.

296. Kim, L. and Denkers, E. Y. Toxoplasma gondii triggers Gi-dependent PI 3-kinase signaling required for inhibition of host cell apoptosis. J Cell Sci. 2006; 119: 2119-2126.

297. Cheeran, M. C., Hu, S., Ni, H. T., Sheng, W., Palmquist, J. M., Peterson, P. K. et al. Neural precursor cell susceptibility to human cytomegalovirus diverges along glial or neuronal differentiation pathways. J Neurosci Res. 2005; 82: 839-850.

298. Liang, Y. and Roizman, B. State and role of SRC family kinases in replication of herpes simplex virus 1. J Virol. 2006; 80: 3349-3359.

299. Sellner, J., Lenhard, T., Haas, J., Einsiedel, R., and Meyding-Lamade, U. Differential mRNA expression of neurotrophic factors GDNF, BDNF, and NT-3 in experimental herpes simplex virus encephalitis. Brain Res.Mol Brain Res. 2005; 137: 267-271.

300. Yoo, J. Y., Wang, X. W., Rishi, A. K., Lessor, T., Xia, X. M., Gustafson, T. A. et al. Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin. Br.J Cancer 2000; 82: 683-690.

301. Honda, A., Okamoto, T., and Ishihama, A. Host factor Ebp1: selective inhibitor of influenza virus transcriptase. Genes Cells 2007; 12: 133-142.

302. Higaki, S., Deai, T., Fukuda, M., and Shimomura, Y. Microarray analysis in the HSV-1 latently infected mouse trigeminal ganglion. Cornea 2004; 23: S42-S47.

303. Rosenbergova, M. and Pristasova, S. Relationship of 2',3'-cyclic nucleotide 3'-phosphohydrolase activity of large enveloped RNA viruses to host cell activity. Acta Virol. 1991; 35: 401-407.

304. Honda, H. and Takahashi, A. Virus-associated demyelination in the pathogenesis of Bell's palsy. Intern.Med 1992; 31: 1250-1256.

305. Lunemann, J. D., Gelderblom, H., Sospedra, M., Quandt, J. A., Pinilla, C., Marques, A. et al. Cerebrospinal fluid-infiltrating CD4+ T cells recognize Borrelia burgdorferi lysine-enriched protein domains and central nervous system autoantigens in early lyme encephalitis. Infect.Immun. 2007; 75: 243-251.

306. Choi, W. Y., Nam, H. W., Youn, J. H., Kim, D. J., Kim, W. K., and Kim, W. S. The effect of cyclic AMP on the growth of Toxoplasma gondii in vitro. Kisaengchunghak Chapchi 1990; 28: 71-78.

307. Fatemi, S. H., Araghi-Niknam, M., Laurence, J. A., Stary, J. M., Sidwell, R. W., and Lee, S. Glial fibrillary acidic protein and glutamic acid decarboxylase 65 and 67 kDa proteins are increased in brains of neonatal BALB/c mice following viral infection in utero. Schizophr.Res. 2004; 69: 121-123.

308. Ou, D., Mitchell, L. A., Metzger, D. L., Gillam, S., and Tingle, A. J. Cross-reactive rubella virus and glutamic acid decarboxylase (65 and 67) protein determinants recognised by T cells of patients with type I diabetes mellitus. Diabetologia 2000; 43: 750-762.

309. Sugita, S., Takase, H., Kawaguchi, T., Taguchi, C., and Mochizuki, M. Cross-reaction between tyrosinase peptides and cytomegalovirus antigen by T cells from patients with Vogt-Koyanagi-Harada disease. Int.Ophthalmol. 2007; 27: 87-95.

310. Yang, C. T., Song, J., Bu, X., Cong, Y. S., Bacchetti, S., Rennie, P. et al. Herpes simplex virus type-1 infection upregulates cellular promoters and telomerase activity in both tumor and nontumor human cells. Gene Ther. 2003; 10: 1494-1502.

311. Yuki, N., Yamamoto, T., and Hirata, K. Correlation between cytomegalovirus infection and IgM anti-MAG/SGPG antibody-associated neuropathy. Ann.Neurol. 1998; 44: 408-410.

312. Brok, H. P., Boven, L., van Meurs, M., Kerlero, de Rosbo, Celebi-Paul, L., Kap, Y. S. et al. The human CMV-UL86 peptide 981-1003 shares a crossreactive T-cell epitope with the encephalitogenic MOG peptide 34-56, but lacks the capacity to induce EAE in rhesus monkeys. J Neuroimmunol. 2007; 182: 135-152.

313. Besson, Duvanel C., Honegger, P., and Matthieu, J. M. Antibodies directed against rubella virus induce demyelination in aggregating rat brain cell cultures. J Neurosci Res. 2001; 65: 446-454.

314. Fatemi, S. H., Pearce, D. A., Brooks, A. I., and Sidwell, R. W. Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: a potential animal model for schizophrenia and autism. Synapse 2005; 57: 91-99.

315. Kang, S., Seo, S., Hill, J., Kwon, B., Lee, H., Cho, H. et al. Changes in gene expression in latent HSV-1-infected rabbit trigeminal ganglia following epinephrine iontophoresis. Curr.Eye Res. 2003; 26: 225-229.

316. Martin, R., Marquardt, P., O'Shea, S., Borkenstein, M., and Kreth, H. W. Virus-specific and autoreactive T cell lines isolated from cerebrospinal fluid of a patient with chronic rubella panencephalitis. J Neuroimmunol. 1989; 23: 1-10.

317. Sherman, L. A., Burke, T. A., and Biggs, J. A. Extracellular processing of peptide antigens that bind class I major histocompatibility molecules. J Exp.Med 1992; 175: 1221-1226.

318. Mulak, M., Misiuk-Hojlo, M., and Slowik, M. [The behavior of angiotensin-converting enzyme in patients with uveitis]. Klin.Oczna 1999; 101: 5-8.

319. Isler, J. A., Skalet, A. H., and Alwine, J. C. Human cytomegalovirus infection activates and regulates the unfolded protein response. J Virol. 2005; 79: 6890-6899.

320. Millhouse, S., Kenny, J. J., Quinn, P. G., Lee, V., and Wigdahl, B. ATF/CREB elements in the herpes simplex virus type 1 latency-associated transcript promoter interact with members of the ATF/CREB and AP-1 transcription factor families. J Biomed.Sci. 1998; 5: 451-464.

321. Ahn, H. J., Kim, S., Kim, H. E., and Nam, H. W. Interactions between secreted GRA proteins and host cell proteins across the paratitophorous vacuolar membrane in the parasitism of Toxoplasma gondii. Korean J Parasitol. 2006; 44: 303-312.

322. Carroll, J. A., Dorward, D. W., and Gherardini, F. C. Identification of a transferrin-binding protein from Borrelia burgdorferi. Infect.Immun. 1996; 64: 2911-2916.

323. Tanaka, T., Abe, Y., Kim, W. S., Xuan, X., Nagasawa, H., Igarashi, I. et al. The detection of bovine lactoferrin binding protein on Toxoplasma gondii. J Vet.Med Sci. 2003; 65: 1377-1380.

324. Turpin, E., Luke, K., Jones, J., Tumpey, T., Konan, K., and Schultz-Cherry, S. Influenza virus infection increases p53 activity: role of p53 in cell death and viral replication. J Virol. 2005; 79: 8802-8811.

325. Casavant, N. C., Luo, M. H., Rosenke, K., Winegardner, T., Zurawska, A., and Fortunato, E. A. Potential role for p53 in the permissive life cycle of human cytomegalovirus. J Virol. 2006; 80 : 8390-8401.

326. Bonin, L. R. and McDougall, J. K. Human cytomegalovirus IE2 86-kilodalton protein binds p53 but does not abrogate G1 checkpoint function. J Virol. 1997; 71: 5861-5870.

327. Boutell, C. and Everett, R. D. Herpes simplex virus type 1 infection induces the stabilization of p53 in a USP7- and ATM-independent manner. J Virol. 2004; 78: 8068-8077.

328. Boutell, C. and Everett, R. D. The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and Ubiquitinates p53. J Biol.Chem. 2003; 278: 36596-36602.

329. Megyeri, K., Berencsi, K., Halazonetis, T. D., Prendergast, G. C., Gri, G., Plotkin, S. A. et al. Involvement of a p53-dependent pathway in rubella virus-induced apoptosis. Virology 1999; 259: 74-84.

330. Falcon, A. M., Fortes, P., Marion, R. M., Beloso, A., and Ortin, J. Interaction of influenza virus NS1 protein and the human homologue of Staufen in vivo and in vitro. Nucleic Acids Res. 1999; 27: 2241-2247.

331. Bramham, C. R. and Wells, D. G. Dendritic mRNA: transport, translation and function. Nat.Rev.Neurosci 2007;

332. De Regge, N., Nauwynck, H. J., Geenen, K., Krummenacher, C., Cohen, G. H., Eisenberg, R. J. et al. Alpha-herpesvirus glycoprotein D interaction with sensory neurons triggers formation of varicosities that serve as virus exit sites. J Cell Biol. 2006; 174: 267-275.

333. Shen, W., Wu, B., Zhang, Z., Dou, Y., Rao, Z. R., Chen, Y. R. et al. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron 2006; 50: 401-414.

334. Hui, E. K., Barman, S., Tang, D. H., France, B., and Nayak, D. P. YRKL sequence of influenza virus M1 functions as the L domain motif and interacts with VPS28 and Cdc42. J Virol. 2006; 80: 2291-2308.

335. Hitosugi, M., Ichijo, M., Matsuoka, Y., Takenaka, N., and Fujii, H. [Proton MR spectroscopy findings in herpes simplex encephalitis]. Rinsho Shinkeigaku 1996; 36: 839-843.

336. Menon, D. K., Sargentoni, J., Peden, C. J., Bell, J. D., Cox, I. J., Coutts, G. A. et al. Proton MR spectroscopy in herpes simplex encephalitis: assessment of neuronal loss. J Comput.Assist.Tomogr. 1990; 14: 449-452.

337. Merlin, D., Steel, A., Gewirtz, A. T., Si-Tahar, M., Hediger, M. A., and Madara, J. L. hPepT1-mediated epithelial transport of bacteria-derived chemotactic peptides enhances neutrophil-epithelial interactions. J Clin.Invest 1998; 102: 2011-2018.

338. Holmes, K. D., Cassam, A. K., Chan, B., Peters, A. A., Weaver, L. C., and Dekaban, G. A. A multi-mutant herpes simplex virus vector has minimal cytotoxic effects on the distribution of filamentous actin, alpha-actinin 2 and a glutamate receptor in differentiated PC12 cells. J Neurovirol. 2000; 6: 33-45.

339. Brask, J., Chauhan, A., Hill, R. H., Ljunggren, H. G., and Kristensson, K. Effects on synaptic activity in cultured hippocampal neurons by influenza A viral proteins. J Neurovirol. 2005; 11 : 395-402.

340. Wu, H. M., Huang, C. C., Chen, S. H., Liang, Y. C., Tsai, J. J., Hsieh, C. L. et al. Herpes simplex virus type 1 inoculation enhances hippocampal excitability and seizure susceptibility in mice. Eur.J Neurosci 2003; 18: 3294-3304.

341. Kosugi, I., Kawasaki, H., Tsuchida, T., and Tsutsui, Y. Cytomegalovirus infection inhibits the expression of N-methyl-D-aspartate receptors in the developing mouse hippocampus and primary neuronal cultures. Acta Neuropathol.(Berl) 2005; 109: 475-482.

342. Reinhard, J. F., Jr. Altered tryptophan metabolism in mice with herpes simplex virus encephalitis: increases in spinal cord quinolinic acid. Neurochem Res. 1998; 23: 661-665.

343. Halperin, J. J. and Heyes, M. P. Neuroactive kynurenines in Lyme borreliosis. Neurology 1992; 42: 43-50.

344. Nair, A., Hunzeker, J., and Bonneau, R. H. Modulation of microglia and CD8(+) T cell activation during the development of stress-induced herpes simplex virus type-1 encephalitis. Brain Behav.Immun. 2007; 21: 791-806.

345. Takahashi, Y., Matsuda, K., Kubota, Y., Shimomura, J., Yamasaki, E., Kudo, T. et al. Vaccination and infection as causative factors in Japanese patients with Rasmussen syndrome: molecular mimicry and HLA class I. Clin.Dev.Immunol. 2006; 13: 381-387.

346. Reymond, N., Garrido-Urbani, S., Borg, J. P., Dubreuil, P., and Lopez, M. PICK-1: a scaffold protein that interacts with Nectins and JAMs at cell junctions. FEBS Lett. 2005; 579: 2243-2249.

347. Excoffon, K. J., Hruska-Hageman, A., Klotz, M., Traver, G. L., and Zabner, J. A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth. J Cell Sci. 2004; 117: 4401-4409.

348. Danaher, R. J., Savells-Arb, A. D., Black, S. A., Jr., Jacob, R. J., and Miller, C. S. Herpesvirus quiescence in neuronal cells IV: virus activation induced by pituitary adenylate cyclase-activating polypeptide (PACAP) involves the protein kinase A pathway. J Neurovirol. 2001; 7: 163-168.

349. Burgos, J. S., Ramirez, C., Sastre, I., Bullido, M. J., and Valdivieso, F. Involvement of apolipoprotein E in the hematogenous route of herpes simplex virus type 1 to the central nervous system. J Virol. 2002; 76: 12394-12398.

350. Gonzalez-Polo, R. A., Carvalho, G., Braun, T., Decaudin, D., Fabre, C., Larochette, N. et al. PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene 2005; 24: 7503-7513.

351. Collaco, A. M., Rahman, S., Dougherty, E. J., Williams, B. B., and Geusz, M. E. Circadian regulation of a viral gene promoter in live transgenic mice expressing firefly luciferase. Mol Imaging Biol. 2005; 7: 342-350.

352. Sigworth, L. A., Liao, L., Chandler, T. R., and Geusz, M. E. Luciferase expression controlled by a viral gene promoter in a mammalian circadian pacemaker. Neuroreport 2003; 14: 443-447.

353. Zambrano, M. C., Beklemisheva, A. A., Bryksin, A. V., Newman, S. A., and Cabello, F. C. Borrelia burgdorferi binds to, invades, and colonizes native type I collagen lattices. Infect.Immun. 2004; 72: 3138-3146.

354. Vuaillat, C., Varrin-Doyer, M., Bernard, A., Sagardoy, I., Cavagna, S., Chounlamountri, I. et al. High CRMP2 expression in peripheral T lymphocytes is associated with recruitment to the brain during virus-induced neuroinflammation. J Neuroimmunol. 2008; 193: 38-51.

355. Jones-Brando, L., Torrey, E. F., and Yolken, R. Drugs used in the treatment of schizophrenia and bipolar disorder inhibit the replication of Toxoplasma gondii. Schizophr.Res. 2003; 62: 237-244.

356. Zhang, C. X., Ofiyai, H., He, M., Bu, X., Wen, Y., and Jia, W. Neuronal activity regulates viral replication of herpes simplex virus type 1 in the nervous system. J Neurovirol. 2005; 11: 256-264.

357. Mazzoni, A., Leifer, C. A., Mullen, G. E., Kennedy, M. N., Klinman, D. M., and Segal, D. M. Cutting edge: histamine inhibits IFN-alpha release from plasmacytoid dendritic cells. J Immunol. 2003; 170: 2269-2273.

358. Elphick, G. F., Querbes, W., Jordan, J. A., Gee, G. V., Eash, S., Manley, K. et al. The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science 2004; 306: 1380-1383.

359. Reeves, M. B., Davies, A. A., McSharry, B. P., Wilkinson, G. W., and Sinclair, J. H. Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 2007; 316: 1345-1348.

360. Pasieka, T. J., Baas, T., Carter, V. S., Proll, S. C., Katze, M. G., and Leib, D. A. Functional genomic analysis of herpes simplex virus type 1 counteraction of the host innate response. J Virol. 2006; 80: 7600-7612.

361. Krizanova, O. Role of calcium-dependent regulator protein (CDR) in inhibition of 3',5'-c AMP-phosphodiesterase by influenza virus. II. Kinetic studies on inhibition of CDR-dependent phosphodiesterase by influenza virus. Acta Virol. 1979; 23: 303-313.

362. Staak, K., Prosch, S., Stein, J., Priemer, C., Ewert, R., Docke, W. D. et al. Pentoxifylline promotes replication of human cytomegalovirus in vivo and in vitro. Blood 1997; 89: 3682-3690.

363. Trofatter, K. F., Jr. and Daniels, C. A. Effect of prostaglandins and cyclic adenosine 3',5'-monophosphate modulators on herpes simplex virus growth and interferon response in human cells. Infect.Immun. 1980; 27: 158-167.

364. Chaudhary, K., Darling, J. A., Fohl, L. M., Sullivan, W. J., Jr., Donald, R. G., Pfefferkorn, E. R. et al. Purine salvage pathways in the apicomplexan parasite Toxoplasma gondii. J Biol.Chem. 2004; 279: 31221-31227.

365. Scott, E. S., Malcomber, S., and O'Hare, P. Nuclear translocation and activation of the transcription factor NFAT is blocked by herpes simplex virus infection. J Virol. 2001; 75: 9955-9965.

366. Chen, X., Li, J., Mata, M., Goss, J., Wolfe, D., Glorioso, J. C. et al. Herpes simplex virus type 1 ICP0 protein does not accumulate in the nucleus of primary neurons in culture. J Virol. 2000; 74: 10132-10141.

367. High, K. P., Joiner, K. A., and Handschumacher, R. E. Isolation, cDNA sequences, and biochemical characterization of the major cyclosporin-binding proteins of Toxoplasma gondii. J Biol.Chem. 1994; 269: 9105-9112.

368. Adams, B., Musiyenko, A., Kumar, R., and Barik, S. A novel class of dual-family immunophilins. J Biol.Chem. 2005; 280: 24308-24314.

369. Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P. et al. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 1999; 4: 145-154.

370. Behera, A. K., Hildebrand, E., Uematsu, S., Akira, S., Coburn, J., and Hu, L. T. Identification of a TLR-independent pathway for Borrelia burgdorferi-induced expression of matrix metalloproteinases and inflammatory mediators through binding to integrin alpha 3 beta 1. J Immunol. 2006; 177: 657-664.

371. Schmid, R. S., Jo, R., Shelton, S., Kreidberg, J. A., and Anton, E. S. Reelin, integrin and DAB1 interactions during embryonic cerebral cortical development. Cereb.Cortex 2005; 15: 1632-1636.

372. Groc, L., Choquet, D., Stephenson, F. A., Verrier, D., Manzoni, O. J., and Chavis, P. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci 2007; 27: 10165-10175.

373. Furtado, G. C., Cao, Y., and Joiner, K. A. Laminin on Toxoplasma gondii mediates parasite binding to the beta 1 integrin receptor alpha 6 beta 1 on human foreskin fibroblasts and Chinese hamster ovary cells. Infect.Immun. 1992; 60: 4925-4931.

374. Beraki, S., Aronsson, F., Karlsson, H., Ogren, S. O., and Kristensson, K. Influenza A virus infection causes alterations in expression of synaptic regulatory genes combined with changes in cognitive and emotional behaviors in mice. Mol Psychiatry 2005; 10: 299-308.

375. Cinatl, J., Jr., Cinatl, J., Vogel, J. U., Rabenau, H., Kornhuber, B., and Doerr, H. W. Modulatory effects of human cytomegalovirus infection on malignant properties of cancer cells. Intervirology 1996; 39: 259-269.

376. Rubenstein, R., Price, R. W., and Joh, T. Alteration of tyrosine hydroxylase activity in PC12 cells infected with herpes simplex virus type 1. Arch.Virol. 1985; 83: 65-82.

377. Arsenijevic, D., Onuma, H., Pecqueur, C., Raimbault, S., Manning, B. S., Miroux, B. et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat.Genet. 2000; 26: 435-439.

378. Rousset, S., Emre, Y., Join-Lambert, O., Hurtaud, C., Ricquier, D., and Cassard-Doulcier, A. M. The uncoupling protein 2 modulates the cytokine balance in innate immunity. Cytokine 2006; 35 : 135-142.

379. Crook, M. F., Olive, M., Xue, H. H., Langenickel, T. H., Boehm, M., Leonard, W. J. et al. GA-binding protein regulates KIS gene expression, cell migration, and cell cycle progression. FASEB J 2007;

380. Chen, Z., Knutson, E., Kurosky, A., and Albrecht, T. Degradation of p21cip1 in cells productively infected with human cytomegalovirus. J Virol. 2001; 75: 3613-3625.

381. Pan, S., Sehnke, P. C., Ferl, R. J., and Gurley, W. B. Specific interactions with TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the regulation of transcription when part of a DNA binding complex. Plant Cell 1999; 11: 1591-1602.

382. Besser, M. J., Ganor, Y., and Levite, M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J Neuroimmunol. 2005; 169: 161-171.

383. Meredith, E. J., Holder, M. J., Rosen, A., Lee, A. D., Dyer, M. J., Barnes, N. M. et al. Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: Implications for non-Hodgkin's lymphoma. Proc.Natl.Acad.Sci.U.S.A 2006; 103: 13485-13490.

384. Watanabe, Y., Nakayama, T., Nagakubo, D., Hieshima, K., Jin, Z., Katou, F. et al. Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J Immunol. 2006; 176: 848-856.

385. Boneberg, E. M., von Seydlitz, E., Propster, K., Watzl, H., Rockstroh, B., and Illges, H. D3 dopamine receptor mRNA is elevated in T cells of schizophrenic patients whereas D4 dopamine receptor mRNA is reduced in CD4+ -T cells. J Neuroimmunol. 2006; 173: 180-187.

386. Sarkar, C., Das, S., Chakroborty, D., Chowdhury, U. R., Basu, B., Dasgupta, P. S. et al. Cutting Edge: Stimulation of dopamine D4 receptors induce T cell quiescence by up-regulating Kruppel-like factor-2 expression through inhibition of ERK1/ERK2 phosphorylation. J Immunol. 2006; 177: 7525-7529.

387. Pellegrino, T. C. and Bayer, B. M. Role of central 5-HT(2) receptors in fluoxetine-induced decreases in T lymphocyte activity. Brain Behav.Immun. 2002; 16: 87-103.

388. Khan, N. A. and Poisson, J. P. 5-HT3 receptor-channels coupled with Na+ influx in human T cells: role in T cell activation. J Neuroimmunol. 1999; 99: 53-60.

389. Leon-Ponte, M., Ahern, G. P., and O'Connell, P. J. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 2007; 109: 3139-3146.

390. Tsao, C. W., Lin, Y. S., Cheng, J. T., Chang, W. W., Chen, C. L., Wu, S. R. et al. Serotonin transporter mRNA expression is decreased by lamivudine and ribavirin and increased by interferon in immune cells. Scand.J Immunol. 2006; 63: 106-115.

391. Miglio, G., Varsaldi, F., and Lombardi, G. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation. Biochem.Biophys.Res.Commun. 2005; 338: 1875-1883.

392. Pacheco, R., Oliva, H., Martinez-Navio, J. M., Climent, N., Ciruela, F., Gatell, J. M. et al. Glutamate released by dendritic cells as a novel modulator of T cell activation. J Immunol. 2006; 177: 6695-6704.

393. Moalem, G., Gdalyahu, A., Shani, Y., Otten, U., Lazarovici, P., Cohen, I. R. et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun. 2000; 15: 331-345.

394. Schuhmann, B., Dietrich, A., Sel, S., Hahn, C., Klingenspor, M., Lommatzsch, M. et al. A role for brain-derived neurotrophic factor in B cell development. J Neuroimmunol. 2005; 163: 15-23.

 
 
 
 

View Stats