HSV-1 genes


↑ Grab this Headline Animator

This has been updated: The Host/viral interactome can be found here

KEGG pathway analysis of these interactions can be found here


Viral/Host interactions

Genes from the HSV-1 genome are listed below with links to the ENTREZ gene database. Their interactions with host genes or proteins are also described. Host genes associated with Alzheimer's disease are in bold type.

This supplementary table relates to the publication:- "Interactions between the products of the Herpes simplex genome and Alzheimer's disease susceptibility genes: Relevance to pathological signalling cascades; C.J.Carter, " Neurochem.Int 2008

Other publications:

The Herpes simplex (HSV-1) life cycle. Enhanced links to genes are provided by

An excellent review of the Herpes simplex life cycle is available at Dr Wagner’s website at http://darwin.bio.uci.edu/~faculty/wagner/index.html .  This brief summary is derived from this site.  The virus is composed of three concentric layers comprising a lipid envelope containing glycoproteins responsible for cell attachment and fusion, the tegument and the viral capsid containing the viral DNA.  Following entry, the capsid, and certain tegument proteins travel along the microtubule network and dock at the nuclear pore, liberating the viral genome.  The virus uses its own and the host’s genomic and transcription apparatus to synthesise the proteins necessary for subsequent viral copying and egress.  These proteins are translated within the host cytoplasm, necessitating RNA export and the nuclear reimport of virally encoded proteins.  These are assembled to a capsid within the nucleus, which is exported by fusion, with the aid of viral consituents inserted into the nuclear membrane.  The outer glycoprotein layer is synthesised and processed by glycosylation in the rough endoplasmic reticulum and Golgi apparatus and inserted into the nuclear or cell membrane.  The capsid, associated with tegument proteins is re-enveloped by budding into exocytotic vesicles.  These fuse with the virally altered membrane allowing the escape of a mature infectious virus. 


Envelope glycoproteins and type II membrane proteins

Herpes simplex Virus 1 Genes


Host interactions

UL27 type 1 envelope glycoprotein B

GeneID : 2703455


Binds to heparan sulphate proteoglycans and other unknown cellular effectors 13. Cellular entry is cholesterol dependent and blocked by the HMGCR inhibitor nystatin 14Possesses an antigenic region with homology to APOE 11. Binds to host transcription factor YY1 88. Host defensins inhibit viral infection by binding to glycoprotein B 55 . Binds to perk (EIF2AK3) and prevents its activation by endoplasmic reticulum stress 93.

US5 type 1 envelope glycoprotein D GeneID: 2703406


Ligand for the nectin receptor PVRL1 118 Accquires Mannose-6-phosphate residues and binds to Mannose 6 phosphate receptors 24 and to heparan sulfates 106. Binds to the host transcription factor yin-yang-1 (YY1) 48,78,88.  Protects against FAS-mediated apoptosis via an NF-kappa-b mediated process 87.  US3, US5 and US12 inhibit the cytotoxic effects of T-lymphocytes 7

UL44 type 1 envelope glycoprotein C

GeneID : 2703410


Binds to coagulation factor X (F10) 80, which in activated form converts prothrombin to thrombin. Binds to heparin, heparan sulphate and complement 3B110.  Factor X also degrades APP 50

US8 type 1 envelope glycoprotein E

GeneID: 2703448


Part of a HSV Fc epsilon receptor mimic 60 (cf FCER1G). Important for the localisation of virus in the trans-golgi network and subsequent delivery to cell junctions to promote intercellular spread 35,43,86. Phosphorylated by casein kinase II 90.

US8A protein US8A

GeneID: 2703450


None found

US4type 1 envelope glycoprotein G

GeneID: 2703404


None found

UL22 type 1 envelope glycoprotein H GeneID : 2703373


Binds to alphavbeta3 integrins 981. Glycoproteins D, H, L and B interact with membrane lipids and allow entry into cells via membrane fusion 119.

US7 type 1 envelope glycoprotein I

Other Aliases: HHV1gp098

GeneID: 2703446


Part of a HSV Fc epsilon reptor mimic 60. Antibodies neutralise infectivity in the presence of Complement 120.

UL53type 3 envelope glycoprotein K

GeneID : 2703425


Regulates membrane fusion and promotes egress of viral particles 57,105

UL1 envelope glycoprotein L

GeneID : 2703393


Glycoproteins B,D.H and L can promote cell fusion 23

UL10 type 3 envelope glycoprotein M

GeneID : 2703379


Induces clathrin mediated endocytosis of other viral proteins and host nectin receptors 31

UL49A type 1 envelope glycoprotein N

GeneID : 2703419


None found

UL20 type 3 envelope protein UL20

GeneID : 2703371


Involved in viral egress allowing escape of the virus to the extracellular space10.

UL43type 3 envelope protein UL43

GeneID : 2703408


None found

UL45type 2 membrane protein UL45

GeneID : 2703412


None found

UL56type 2 membrane protein UL56

GeneID : 2703428


Interacts with kinesin motor protein KIF1A71(HSV2)

US9 type 2 membrane protein US9

GeneID: 2703452


Interacts with the ubiquitin dependent proteasomal pathway of protein degradation 21



capsid triplex subunit 2

GeneID : 2703366


None found

UL19 major capsid protein

GeneID : 2703368


Binds to host transcription factor YY1 88


capsid maturation protease

GeneID : 2703453


None found


capsid scaffold protein

GeneID : 2703454


None found

UL35small capsid protein VP26

GeneID : 2703356


Binds to the dynein components MAPRE3, DYNLT1 and DYNLL1 37


capsid triplex subunit 1

GeneID : 2703359


UL38 blocks apoptosis by blocking caspase 3 and poly (ADP-ribose) polymerase cleavage (CMV) 124. Interacts with human hTAF(II)70101. Promoter region binds to DNA-dependent protein kinase 102IL6 binds to IL6 response elements in the LAT (ICP27)  and ICPO viral genes72.


capsid portal protein

GeneID : 2703429


None found


UL11 myristylated tegument protein

GeneID : 2703380


Associates with nuclear and cytoplasmic membranease and the golgi apparatus and may play a role in egress from cells 8,9,20,82,83

UL13 tegument serine/threonine protein kinase

GeneID : 2703383


CDC2 mimic  that phosphorylates casein kinase II beta and eukaryotic elongation factor 1delta 64.Casein kinase II phosphorylates APP, APOE and PSEN2. 46,104,127.Activates the host cyclin dependendent kinase CDC2 2-4 which in turn phosphorylates herpes simplex proteins including ICP0 and potentially 26 other HSV proteins that contain cdc2 concensusphosphorylation sites 2. CDC2 phosphorylates beta-amyloid (APP) 89 and tau (MAPT) and also phosphorylates and stabilises the sterol regulatory element-binding protein (SREBF1) 17.

UL14 tegument protein UL14

GeneID : 2703384


Antiapoptotic properties related to its heatshock protein like properties 131,132

UL16tegument protein UL16

GeneID : 2703386


None found

UL17DNA packaging tegument protein UL17

GeneID : 2703388


None found

UL21tegument protein UL21

GeneID : 2703372


Has a certain homology to tau (MAPT), and like tau promotes the formation of longprocesses when transfected into non-neuronal cells.  Both tau and UL21 promote the assembly of micotubules 121

UL25DNA packaging tegument protein UL25

GeneID : 2703377


None found

UL36large tegument protein

GeneID : 2703357


Possesses deubiquitinating activity (ubiquitin specific protease)63,114.

UL37tegument protein UL37

GeneID : 2703358


Binds to host transcription factor YY1 88

UL41 tegument host shutoff protein

GeneID : 2703365


Degrades host mRNA including GAPDH74, Downregulates mRNA for the TNF receptor TNFR1 76

UL46tegument protein VP11/12 GeneID: 2703413


None found

UL47tegument protein VP13/14

GeneID : 2703415


RNA-binding protein capable of shuttling between nucleus and cytoplasm 36

UL48 transactivating tegument protein VP16

GeneID : 2703416


The homeo domain of the Oct-1 transcription factor (POU2F1)directs formation of a multiprotein-DNA complex containing Oct-1, the herpes simplex virus (HSV) trans-activator VP16, and a second host cell factor (HCF).117. Binds to host transcription factor YY1 78 The herpes simplex proteins VP16 and ICP4 both bind to host TATA binding proteins and the general transcription factor GTF2B, one of the ubiquitous transcription factors required for transcription initiation by RNA polymerase II 79,116.VP16 binds to arc92 (MED25) a mediator of RNA polymerase II transcription 133.

UL49tegument protein VP22

GeneID : 2703417


Interacts with the actin-associated motor protein nonmuscle myosin IIA (NMIIA)125. Interacts with 
Kinesin heavy chain uKHC 34. Phosphorylated by casein kinase II 40. Results in the hyperacetylation of
 microtubules 39.  This property is shared by unphosphorylated tau (MAPT) 28 and both tau and VP22 
are able to stabilise microtubules via this mechanism.  

UL51 tegument protein UL51

GeneID : 2703422


Involved in the nuclear egress of viral particles 95

UL7tegument protein UL7

GeneID : 2703431


None found

US11tegument protein US11

GeneID: 2703439


Interacts with Kinesin heavy chain (KIF5B) 34. Binds to pat1 (APPBP2) a binding partner of the cytoplasmic domain of APP 12. US11 also binds to and is phosphorylated by HIPK2 and US11 prevents the growth-arrest promoted by HIPK2 in Hela cells 47. HIPK2 binds to p53 and p73 (TP73) and is involved in the apoptotic pathways of these tumor proteins 68. Inhibits 2'-5'-oligoadenylate synthetase  112.  Several studies have shown that the activity of this enzyme is markedly reduced in fibroblasts isolated from Alzheimer’s disease patients 6,66,100. Prevents PKR activation by inhibiting the PKR activator PACT (PRKRA) 92


UL24nuclear protein UL24

GeneID : 2703375


None found

UL3nuclear protein UL3

GeneID : 2703461


None found

UL4nuclear protein UL4

GeneID : 2703362


Promoter contains a cyclic AMP concensus sequence that binds to CREB 61

UL55nuclear protein UL55

GeneID : 2703427


Phosphorylated by casein kinase II (CMV) 58.

UL31nuclear egress lamina protein

GeneID : 2703350


The HSV-1, U(L)31 and U(L)34 proteins are dependent on each other for proper targeting to the nuclear membrane and are required for efficient envelopment of nucleocapsids at the inner nuclear membrane. Bind to Lamin A/C (LMNA) 108

UL34nuclear egress type 2 membrane protein

GeneID : 2703355


Disrupts the nuclear lamina during infection Expression of either UL34 or US3 proteins alone disrupted lamin A/C and lamin B localization. Bind to Lamin A/C (LMNA) 108

109,115Interacts with a cytoplasmic dynein intermediate chain Dync1i1134

Miscellaneous viral genes with major effects on host physiology

Herpes simplex Virus 1 Genes


Host interactions


Record to support submission of GeneRIFs for a gene not in Entrez Gene

GeneID: 2828259


Includes ICP8, ICP27

ICP8 binds to proteins involved in DNA repair, replication and recombination and to LMNA and PARP1 (mouse two-hybrid) 123. Viral ICP8, ICP22, ICP27 and ICP28 associate with host RNA polymerase II 32,75,138 ICP4 and ICP27 are anvolved in the suppression of TNF synthesis invoked by HSV to combat host inflammatory reponses 91. ICP27 stabilises the mRNA of IEX-1 (IER3) 30a protein that blocks both FAS and TNF mediated apoptosis 129. ICP27 also contains an element coding for a microrna that downregulates TGFB1 and SMAD3 expression 49Phosphorylated by host CK2 and protein kinase A 137. ICP27 binds to PABG, EIF3 and EIF4G 44 and to HNRPKand CSNK2B 126. ICP27 activates JNK and P38 kinases 53. ICP27 Binds to RNA polymerase II32 ICP27 binds to and stimulates human casein kinase II 70 Casein kinase II phosphorylates APP, APOE and PSEN2. 46,104,127. HSV-1 infection results in an early activation of the transcription factor nuclear factor kappa beta (NFKB1) an effect mediated via the viral proteins ICP4 and ICP27 54.  Herpes simplex infection has been shown to increase the phosphorylation of the host transcription factor SP1, an effect involving ICP4 and ICP27, that reduce its transcriptional efficacy67.

UL12 deoxyribonuclease

GeneID : 2703382


A truncated form of UL12 (UL12.5) localises to mitochondria and deletes host mitochondrial DNA 111. 

US1regulatory protein ICP22 GeneID: 2703435


Activates the host cyclin dependendent kinase CDC2 2-4 which in turn phosphorylates herpes 
simplex proteins including ICP0 and potentially 26 other HSV proteins that contain CDC2
concensus phosphorylation sites 2. CDC2 phosphorylates beta-amyloid (APP) 89 and tau (MAPT) 
and also phosphorylates and stabilises the sterol regulatory element-binding protein (SREBF1) 17.
UL13 and ICP22 mediate the stabilization of CDC2 and the replacement of its cellular partner, 
cyclin B, with the viral DNA polymerase processivity factor U(L)42.Binds to GLTSCR2 25 and 
MCRS126. Viral ICP8, ICP22, ICP27 and ICP28 associate with host RNA polymerase II 32,75,138. 

US3 serine/threonine protein kinase US3

GeneID: 2703401


US3, US5 and US12 inhibit the cytotoxic effects of T-lymphocytes 7. Involved in prevention of FAS-mediated apoptosis 59. Inhibits mitochondrial electron transport.33 Prevents caspase dependent cleavage and activation of BAD 15. Activates potein kinase A and has similar kinase properties 16. Reverses cleavage of BID by granzyme B 27.Phosphorylates cytokeratin 17 94. Blocks histone deacetylation (HDAC1) 103 Phosphorylates UL34, ICP22, and Us9 and the cellular protein Bad 62. Herpes viral infection of arterial smooth muscle cells leads to the accumulation of cholesterol 52, partly due to a decrease in cholesteryl ester hydrolysis mediated by decreases in the activities of acid (lysosomal) cholesteryl ester hydrolase (LIPA) and neutral (cytoplasmic) cholesteryl ester hydrolase.  Infection of these cells also increased the internalisation of low-density lipoprotein and increases the mRNA expression of the lipoprotein receptor LDLR.  The activity and expression of the cholesterol synthetic enzymeHMGCR were also increased by HSV infection.  In uninfected cells, mevalonic acid and 25-hydroxycholesterol (the product of cholesterol-25 hydroxylase: CH25H) reduced the activity of HMGCR but this effect was lost in the HSV-infected cells suggesting that the virus may interfere with the repressive effects of oxysterols on cholesterol synthesis. These effects were mediated by the viral kinase vpk1 (US3) 56

US12 virion protein US10

Other Designations: TAP transporter inhibitor ICP47

GeneID: 2703441


Inhibits TAP2 5,45. US3, US5 and US12 inhibit the cytotoxic effects of T-lymphocytes 7

RS1 transcriptional regulator ICP4

GeneID: 2703392 and 2703391

NP_044662 and NP_044676

CDC2 substrate 1. PKA substrate 130. Herpes simplex infection has been shown to increase the phosphorylation of the host transcription factor SP1, an effect involving ICP4 and ICP27, that reduces its transcriptional efficacy67.  HSV-1 infection results in an early activation of the transcription factor nuclear factor kappa beta (NFKB1) an effect mediated via the viral proteins ICP4 and ICP27 54.  Involved in the suppression of TNF synthesis invoked by HSV to combat host inflammatory reponses  (production of IFN-{alpha}/ß, TNFA, IL6, IL-12, and RANTES). 91 The herpes simplex proteins VP16 and ICP4 both bind to host TATA binding proteins and the general transcription factor GTF2B, one of the ubiquitous transcription factors required for transcription initiation by RNA polymerase II 79,116. The host transcription factors GABPA (one of several genes known as nuclear respiratory factor 2) and GABPB2 also control the expression of Herpes viral intermediate genes via an interaction with the viral ICP4 promoter 38.REST/NRSE inhibits promoter activity Pinnoji et al, 2007

UL9 DNA replication origin-binding helicase

GeneID : 2703434


Binds to NFB42 (FBXO2) 42 a component of the SCF (SKP1-cullin-F-box) ubiquitin ligasecomplex.  FBXO2 is involved in the nuclear export of viral UL9 41 and in its degradation 42.FBXO2 recognises sugar chains (N-glycans), and ubiquitinates N-glycosylated proteins,including the T-cell receptor and the alpha-2-HS-glycoprotein (AHSG) 135It is involved in the endoplasmic reticulum associated degradation pathway (ERAD) 136.

RL2 ubiquitin E3 ligase ICP0

GeneID : 2703390


Binds to and ubiquitinates TP53 19. Binds to YY148. Blocks histone deacetylation (HDAC1) 103. Binds to GLTSCR2 25 The ICP0 protein of HSV1 interacts with certain histone deacetylases (HDAC4,5 and 9) via an amino terminal domain responsible for suppressing the activity of myocyte enhance factor  MEF2A by nuclear sequestration.  ICP0 overcomes the HDAC mediated suppression of MEF2A 81.  Implicated as an important trigger of the apoptotic response involving PARP1 and caspase-3 cleavage but the pathway involved remains to be defined 113. IL6 binds to IL6 response elements in the LAT (ICP27)  and ICPO viral genes72. ICP0 contains two E3 ubiquitin ligase domains, one of which binds to the host ubiquitin conjugating enzyme CDC34 and another that binds to host UbcH5a (UBE2D1)- and UbcH6 (UBE2E1) E2-conjugating enzymes51.  Both these E2 conjugating enzymes are known to complex with the ubiquitin ligase e6ap (UBE3A) 96,97,which in turn binds to both ubiquilins (UBQLN1, 2) 69. UBQLN1 binds to both presenilins (PSEN1, PSEN2) and also regulates PEN2 and NCSTN protein levels, thus controlling the degradation of the gamma-secretase complex 84,85. ICP0 also interacts with a cellular ubiquitin-specific protease USP7 (also known as HAUSP) 18,51 a deubiquitylating enzyme that stabilises p53 (TP53) and MDM2. Binds to the adaptor protein CIN85 and forms a tripartite complex including CIN85 and the cbl ubiquitin ligase (CBL) 77.  CIN 85 binds to numerous components of the tyrosine kinase signalling cascade including GRB2, SOS1 and PIK3R1128 while CBL ubiquitinates tyrosine kinase receptors, (including the lymphocyte tyrosine kinase LCK) 107targeting them for destruction. Binds to and stabilises cyclin D3 65.

RL1 neurovirulence protein ICP34.5 GeneID : 2703396

GeneID : 2703395




PPP1R15A  (gadd34) mimic that dephosphorylates eif2alpha, the stress kinase phosphorylated by PKR 99,122 
Complexes with proliferating cell nuclear antigen (PCNA) 22

US12virion protein US10 GeneID: 2703441


US3, US5 and US12 inhibit the cytotoxic effects of T-lymphocytes 7

UL54 multifunctional expression regulator

GeneID : 2703426


Interacts with HNRPK and casein kinase II 126

Miscellaneous viral genes

UL2 uracil-DNA glycosylase

GeneID: 2703370


None found

UL23 thymidine kinase

GeneID : 2703374


Contains concensus sites for host transcription factors Spl, CTF, and TFIID73

UL39 ribonucleotide reductase subunit 1

Other Aliases : HHV1gp057

GeneID : 2703361


Phosphorylated by casein kinase II 29

UL40ribonucleotide reductase subunit 2

GeneID : 2703364


None found

UL50 : deoxyuridine triphosphatase

GeneID : 2703421


Catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate.

UL52 helicase-primase primase subunit

GeneID : 2703423


None found

UL15DNA packaging terminase subunit 1

GeneID : 2703385


None found

UL28DNA packaging terminase subunit 2

GeneID : 2703457


None found

UL29 single-stranded DNA-binding protein

GeneID : 2703458


None found

UL30DNA polymerase catalytic subunit GeneID : 2703462


None found

UL32DNA packaging protein UL32

GeneID : 2703352


cleavage and packaging of herpesvirus DNA into preassembled capsids

UL33DNA packaging protein UL33

GeneID : 2703353


None found

UL42DNA polymerase processivity subunit

GeneID : 2703407


None found

UL5helicase-primase helicase subunit

GeneID : 2703420


None found

UL8helicase-primase subunit

GeneID : 2703432


None found

US2 virion protein US2

GeneID: 2703399


MHC class I binding protein.



Reference List

     1.    Advani, S. J., R. Hagglund, R. R. Weichselbaum, and B. Roizman. 2001. Posttranslational processing of infected cell proteins 0 and 4 of herpes simplex virus 1 is sequential and reflects the subcellular compartment in which the proteins localize. J Virol. 75:7904-7912.

     2.    Advani, S. J., R. R. Weichselbaum, and B. Roizman. 2000. The role of cdc2 in the expression of herpes simplex virus genes. Proc. Natl. Acad. Sci. U. S. A 97:10996-11001.

     3.    Advani, S. J., R. R. Weichselbaum, and B. Roizman. 2001. cdc2 cyclin-dependent kinase binds and phosphorylates herpes simplex virus 1 U(L)42 DNA synthesis processivity factor. J Virol. 75:10326-10333.

     4.    Advani, S. J., R. R. Weichselbaum, and B. Roizman. 2003. Herpes simplex virus 1 activates cdc2 to recruit topoisomerase II alpha for post-DNA synthesis expression of late genes. Proc. Natl. Acad. Sci. U. S. A 100:4825-4830.

     5.    Ahn, K., T. H. Meyer, S. Uebel, P. Sempe, H. Djaballah, Y. Yang, P. A. Peterson, K. Fruh, and R. Tampe. 1996. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15:3247-3255.

     6.    An, S. and J. M. Wu. 1994. Comparative study of 2',5'-oligoadenylate (2-5A) synthetase in control and Alzheimer's disease (AD) cells. Biochem. Mol Biol. Int. 32:1003-1008.

     7.    Aubert, M., E. M. Krantz, and K. R. Jerome. 2006. Herpes simplex virus genes Us3, Us5, and Us12 differentially regulate cytotoxic T lymphocyte-induced cytotoxicity. Viral Immunol. 19:391-408.

     8.    Baines, J. D., R. J. Jacob, L. Simmerman, and B. Roizman. 1995. The herpes simplex virus 1 UL11 proteins are associated with cytoplasmic and nuclear membranes and with nuclear bodies of infected cells. J Virol. 69:825-833.

     9.    Baines, J. D. and B. Roizman. 1992. The UL11 gene of herpes simplex virus 1 encodes a function that facilitates nucleocapsid envelopment and egress from cells. J Virol. 66:5168-5174.

   10.    Baines, J. D., P. L. Ward, G. Campadelli-Fiume, and B. Roizman. 1991. The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. J Virol. 65:6414-6424.

   11.    Becker, Y. 1992. Computer prediction of antigenic and topogenic domains in HSV-1 and HSV-2 glycoprotein B (gB). Virus Genes 6:131-141.

   12.    Benboudjema, L., M. Mulvey, Y. Gao, S. W. Pimplikar, and I. Mohr. 2003. Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides. J Virol.  77:9192-9203.

   13.    Bender, F. C., J. C. Whitbeck, H. Lou, G. H. Cohen, and R. J. Eisenberg. 2005. Herpes simplex virus glycoprotein B binds to cell surfaces independently of heparan sulfate and blocks virus entry. J Virol. 79:11588-11597.

   14.    Bender, F. C., J. C. Whitbeck, d. L. Ponce, H. Lou, R. J. Eisenberg, and G. H. Cohen. 2003. Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry. J Virol. 77:9542-9552.

   15.    Benetti, L., J. Munger, and B. Roizman. 2003. The herpes simplex virus 1 US3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol. 77:6567-6573.

   16.    Benetti, L. and B. Roizman. 2004. Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc. Natl. Acad. Sci. U. S. A 101:9411-9416.

   17.    Bengoechea-Alonso, M. T. and J. Ericsson. 2006. Cdk1/cyclin B-mediated phosphorylation stabilizes SREBP1 during mitosis. Cell Cycle 5:1708-1718.

   18.    Boutell, C., M. Canning, A. Orr, and R. D. Everett. 2005. Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J Virol. 79:12342-12354.

   19.    Boutell, C. and R. D. Everett. 2003. The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and Ubiquitinates p53. J Biol. Chem. 278:36596-36602.

   20.    Bowzard, J. B., R. J. Visalli, and C. B. Wilson. 2000. Membrane targeting properties of a herpesvirus tegument protein-retrovirus Gag chimera. 74:8692-8699.

   21.    Brandimarti, R. and B. Roizman . 1997. Us9, a stable lysine-less herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes. Proc. Natl. Acad. Sci. U. S. A 94:13973-13978.

   22.    Brown, S. M., A. R. MacLean, E. A. McKie, and J. Harland. 1997. The herpes simplex virus virulence factor ICP34.5 and the cellular protein MyD116 complex with proliferating cell nuclear antigen through the 63-amino-acid domain conserved in ICP34.5, MyD116, and GADD34. J Virol. 71:9442-9449.

   23.    Browne, H., B. Bruun, and T. Minson. 2001. Plasma membrane requirements for cell fusion induced by herpes simplex virus type 1 glycoproteins gB, gD, gH and gL. J Gen. Virol. 82:1419-1422.

   24.    Brunetti, C. R., R. L. Burke, S. Kornfeld, W. Gregory, F. R. Masiarz, K. S. Dingwell, and D. C. Johnson. 1994. Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. J Biol. Chem. 269:17067-17074.

   25.    Bruni, R., B. Fineschi, W. O. Ogle, and B. Roizman. 1999. A novel cellular protein, p60, interacting with both herpes simplex virus 1 regulatory proteins ICP22 and ICP0 is modified in a cell-type-specific manner and Is recruited to the nucleus after infection. J Virol. 73:3810-3817.

   26.    Bruni, R. and B. Roizman. 1998. Herpes simplex virus 1 regulatory protein ICP22 interacts with a new cell cycle-regulated factor and accumulates in a cell cycle-dependent fashion in infected cells. J Virol. 72:8525-8531.

   27.    Cartier, A., E. Broberg, T. Komai, M. Henriksson, and M. G. Masucci. 2003. The herpes simplex virus-1 Us3 protein kinase blocks CD8T cell lysis by preventing the cleavage of Bid by granzyme B. Cell Death. Differ. 10:1320-1328.

   28.    Cho, J. H. and G. V. Johnson. 2004. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. Journal of Neurochemistry. 88:349-358.

   29.    Conner, J. 1999. The unique N terminus of herpes simplex virus type 1 ribonucleotide reductase large subunit is phosphorylated by casein kinase 2, which may have a homologue in Escherichia coli. J Gen. Virol. 80 ( Pt 6):1471-1476.

   30.    Corcoran, J. A., W. L. Hsu, and J. R. Smiley. 2006. Herpes simplex virus ICP27 is required for virus-induced stabilization of the ARE-containing IEX-1 mRNA encoded by the human IER3 gene. J Virol. 80:9720-9729.

   31.    Crump, C. M., B. Bruun, S. Bell, L. E. Pomeranz, T. Minson, and H. M. Browne. 2004. Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins. J Gen. Virol. 85:3517-3527.

   32.    Dai-Ju, J. Q., L. Li, L. A. Johnson, and R. M. Sandri-Goldin. 2006. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J Virol. 80:3567-3581.

   33.    Derakhshan, M., M. M. Willcocks, M. A. Salako, G. E. Kass, and M. J. Carter. 2006. Human herpesvirus 1 protein US3 induces an inhibition of mitochondrial electron transport. J Gen. Virol. 87:2155-2159.

   34.    Diefenbach, R. J., M. Miranda-Saksena, E. Diefenbach, D. J. Holland, R. A. Boadle, P. J. Armati, and A. L. Cunningham. 2002. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J Virol. 76:3282-3291.

   35.    Dingwell, K. S., C. R. Brunetti, R. L. Hendricks, Q. Tang, M. Tang, A. J. Rainbow, and D. C. Johnson. 1994. Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol. 68:834-845.

   36.    Donnelly, M. and G. Elliott. 2001. Nuclear localization and shuttling of herpes simplex virus tegument protein VP13/14. J Virol. 75:2566-2574.

   37.    Douglas, M. W., R. J. Diefenbach, F. L. Homa, M. Miranda-Saksena, F. J. Rixon, V. Vittone, K. Byth, and A. L. Cunningham. 2004. Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. J Biol. Chem. 279:28522-28530.

   38.    Douville, P., M. Hagmann, O. Georgiev, and W. Schaffner. 1995. Positive and negative regulation at the herpes simplex virus ICP4 and ICP0 TAATGARAT motifs. Virology 207:107-116.

   39.    Elliott, G. and P. O'Hare. 1998. Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules. J Virol. 72:6448-6455.

   40.    Elliott, G., D. O'Reilly, and P. O'Hare. 1999. Identification of phosphorylation sites within the herpes simplex virus tegument protein VP22. J Virol. 73:6203-6206.

   41.    Eom, C. Y., W. D. Heo, M. L. Craske, T. Meyer, and I. R. Lehman. 2004. The neural F-box protein NFB42 mediates the nuclear export of the herpes simplex virus type 1 replication initiator protein (UL9 protein) after viral infection. Proc. Natl. Acad. Sci. U. S. A 101:4036-4040.

   42.    Eom, C. Y. and I. R. Lehman. 2003. Replication-initiator protein (UL9) of the herpes simplex virus 1 binds NFB42 and is degraded via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. U. S. A 100:9803-9807.

   43.    Farnsworth, A. and D. C. Johnson. 2006. Herpes simplex virus gE/gI must accumulate in the trans-Golgi network at early times and then redistribute to cell junctions to promote cell-cell spread. J Virol. 80:3167-3179.

   44.    Fontaine-Rodriguez, E. C., T. J. Taylor, M. Olesky, and D. M. Knipe. 2004. Proteomics of herpes simplex virus infected cell protein 27: association with translation initiation factors. Virology 330:487-492.

   45.    Galocha, B., A. Hill, B. C. Barnett, A. Dolan, A. Raimondi, R. F. Cook, J. Brunner, D. J. McGeoch, and H. L. Ploegh. 1997. The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility complex (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. J Exp. Med 185:1565-1572.

   46.    Gandy, S., A. J. Czernik, and P. Greengard. 1988. Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Proc. Natl. Acad. Sci. U. S. A 85:6218-6221.

   47.    Giraud, S., C. Diaz-Latoud, S. Hacot, J. Textoris, R. P. Bourette, and J. J. Diaz. 2004. US11 of herpes simplex virus type 1 interacts with HIPK2 and antagonizes HIPK2-induced cell growth arrest. J Virol. 78:2984-2993.

   48.    Gu, W., Q. Huang, and G. S. Hayward. 1995. Multiple Tandemly Repeated Binding Sites for the YY1 Repressor and Transcription Factors AP-1 and SP-1 Are Clustered within Intron-1 of the Gene Encoding the IE110 Transactivator of Herpes simplex Virus Type 1. J Biomed. Sci. 2:203-226.

   49.    Gupta, A., J. J. Gartner, P. Sethupathy, A. G. Hatzigeorgiou, and N. W. Fraser. 2006. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442:82-85.

   50.    Haas, C., J. Aldudo, P. Cazorla, M. J. Bullido, C. de Miguel, J. Vazquez, and F. Valdivieso. 1997. Proteolysis of Alzheimer's disease beta-amyloid precursor protein by factor Xa. Biochim. Biophys. Acta 1343:85-94.

   51.    Hagglund, R., C. Van Sant, P. Lopez, and B. Roizman. 2002. Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites specific for different E2 ubiquitin-conjugating enzymes. Proc. Natl. Acad. Sci. U. S. A 99:631-636.

   52.    Hajjar, D. P., D. J. Falcone, C. G. Fabricant, and J. Fabricant. 1985. Altered cholesteryl ester cycle is associated with lipid accumulation in herpesvirus-infected arterial smooth muscle cells. J Biol. Chem. 260:6124-6128.

   53.    Hargett, D., T. McLean, and S. L. Bachenheimer. 2005. Herpes simplex virus ICP27 activation of stress kinases JNK and p38. J Virol. 79:8348-8360.

   54.    Hargett, D., S. Rice, and S. L. Bachenheimer. 2006. Herpes simplex virus type 1 ICP27-dependent activation of NF-kappaB. J Virol. 80:10565-10578.

   55.    Hazrati, E., B. Galen, W. Lu, W. Wang, Y. Ouyang, M. J. Keller, R. I. Lehrer, and B. C. Herold. 2006. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol. 177:8658-8666.

   56.    Hsu, H. Y., A. C. Nicholson, K. B. Pomerantz, R. J. Kaner, and D. P. Hajjar. 1995. Altered cholesterol trafficking in herpesvirus-infected arterial cells. Evidence for viral protein kinase-mediated cholesterol accumulation. J Biol. Chem. 270:19630-19637.

   57.    Hutchinson, L. and D. C. Johnson. 1995. Herpes simplex virus glycoprotein K promotes egress of virus particles. J Virol. 69:5401-5413.

   58.    Jarvis, M. A., T. R. Jones, D. D. Drummond, P. P. Smith, W. J. Britt, J. A. Nelson, and C. J. Baldick. 2004. Phosphorylation of human cytomegalovirus glycoprotein B (gB) at the acidic cluster casein kinase 2 site (Ser900) is required for localization of gB to the trans-Golgi network and efficient virus replication. J Virol. 78:285-293.

   59.    Jerome, K. R., R. Fox, Z. Chen, A. E. Sears, H. Lee, and L. Corey. 1999. Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol. 73:8950-8957.

   60.    Johnson, D. C., M. C. Frame, M. W. Ligas, A. M. Cross, and N. D. Stow. 1988. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J Virol. 62:1347-1354.

   61.    Jun, P. Y., L. I. Strelow, R. C. Herman, H. S. Marsden, T. Eide, L. Haarr, and D. A. Leib. 1998. The UL4 gene of herpes simplex virus type 1 is dispensable for latency, reactivation and pathogenesis in mice. J Gen. Virol. 79 ( Pt 7):1603-1611.

   62.    Kato, A., M. Yamamoto, T. Ohno, H. Kodaira, Y. Nishiyama, and Y. Kawaguchi. 2005. Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. J Virol. 79:9325-9331.

   63.    Kattenhorn, L. M., G. A. Korbel, B. M. Kessler, E. Spooner, and H. L. Ploegh. 2005. A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol Cell 19:547-557.

   64.    Kawaguchi, Y., K. Kato, M. Tanaka, M. Kanamori, Y. Nishiyama, and Y. Yamanashi. 2003. Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta. J Virol. 77:2359-2368.

   65.    Kawaguchi, Y., C. Van Sant, and B. Roizman. 1997. Herpes simplex virus 1 alpha regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3. J Virol. 71:7328-7336.

   66.    Khanna, K. K., S. J. An, J. M. Wu, S. Landolfo, and A. G. Hovanessian. 1991. Absence of the 40-kDa form of (2'-5')oligoadenylate synthetase and its corresponding mRNA from skin fibroblasts derived from Alzheimer disease patients. Proc. Natl. Acad. Sci. U. S. A 88:5852-5856.

   67.    Kim, D. B. and N. A. DeLuca. 2002. Phosphorylation of transcription factor Sp1 during herpes simplex virus type 1 infection. J Virol. 76:6473-6479.

   68.    Kim, E. J., J. S. Park, and S. J. Um. 2002. Identification and characterization of HIPK2 interacting with p73 and modulating functions of the p53 family in vivo. J Biol. Chem. 277:32020-32028.

   69.    Kleijnen, M. F., A. H. Shih, P. Zhou, S. Kumar, R. E. Soccio, N. L. Kedersha, G. Gill, and P. M. Howley. 2000. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6:409-419.

   70.    Koffa, M. D., J. Kean, G. Zachos, S. A. Rice, and J. B. Clements. 2003. CK2 protein kinase is stimulated and redistributed by functional herpes simplex virus ICP27 protein. J Virol. 77:4315-4325.

   71.    Koshizuka, T., Y. Kawaguchi, and Y. Nishiyama. 2005. Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A. J Gen. Virol. 86:527-533.

   72.    Kriesel, J. D., J. Ricigliano, S. L. Spruance, H. H. Garza, Jr., and J. M. Hill. 1997. Neuronal reactivation of herpes simplex virus may involve interleukin-6. J Neurovirol. 3:441-448.

   73.    Kwun, H. J., S. W. Yim, D. H. Lee, and K. L. Jang. 1999. Activation of the thymidine kinase promoter by herpes simplex virus type 1 immediate early proteins. Mol Cells 9:277-280.

   74.    Laurent, A. M., J. J. Madjar, and A. Greco. 1998. Translational control of viral and host protein synthesis during the course of herpes simplex virus type 1 infection: evidence that initiation of translation is the limiting step. J Gen. Virol. 79 ( Pt 11):2765-2775.

   75.    Leopardi, R., P. L. Ward, W. O. Ogle, and B. Roizman. 1997. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the U(L)13 proteinkinase. J Virol. 71:1133-1139.

   76.    Liang, L. and B. Roizman. 2006. Herpes simplex virus 1 precludes replenishment of the short-lived receptor of tumor necrosis factor alpha by virion host shutoff-dependent degradation of its mRNA. J Virol. 80:7756-7759.

   77.    Liang, Y., A. Kurakin, and B. Roizman. 2005. Herpes simplex virus 1 infected cell protein 0 forms a complex with CIN85 and Cbl and mediates the degradation of EGF receptor from cell surfaces. Proc. Natl. Acad. Sci. U. S. A 102:5838-5843.

   78.    Lieu, P. T. and E. K. Wagner. 2000. Two leaky-late HSV-1 promoters differ significantly in structural architecture. Virology 272:191-203.

   79.    Liljelund, P., C. J. Ingles, and J. Greenblatt. 1993. Altered promoter binding of the TATA box-binding factor induced by the transcriptional activation domain of VP16 and suppressed by TFIIA. Mol Gen. Genet. 241:694-699.

   80.    Livingston, J. R., M. R. Sutherland, H. M. Friedman, and E. L. Pryzdial. 2006. Herpes simplex virus type 1-encoded glycoprotein C contributes to direct coagulation factor X-virus binding. Biochem. J 393:529-535.

   81.    Lomonte, P., J. Thomas, P. Texier, C. Caron, S. Khochbin, and A. L. Epstein. 2004. Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol. 78:6744-6757.

   82.    Loomis, J. S., J. B. Bowzard, R. J. Courtney, and J. W. Wills. 2001. Intracellular trafficking of the UL11 tegument protein of herpes simplex virus type 1. J Virol. 75:12209-12219.

   83.    Loomis, J. S., R. J. Courtney, and J. W. Wills. 2006. Packaging determinants in the UL11 tegument protein of herpes simplex virus type 1. J Virol. 80:10534-10541.

   84.    Mah, A. L., G. Perry, M. A. Smith, and M. J. Monteiro. 2000. Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. J. Cell Biol. 151:847-862.

   85.    Massey, L. K., A. L. Mah, and M. J. Monteiro. 2005. Ubiquilin regulates presenilin endoproteolysis and modulates gamma-secretase components, Pen-2 and nicastrin. Biochem. J. 391:513-525.

   86.    McMillan, T. N. and D. C. Johnson. 2001. Cytoplasmic domain of herpes simplex virus gE causes accumulation in the trans-Golgi network, a site of virus envelopment and sorting of virions to cell junctions. J Virol. 75:1928-1940.

   87.    Medici, M. A., M. T. Sciortino, D. Perri, C. Amici, E. Avitabile, M. Ciotti, E. Balestrieri, E. De Smaele, G. Franzoso, and A. Mastino. 2003. Protection by herpes simplex virus glycoprotein D against Fas-mediated apoptosis: role of nuclear factor kappaB. J Biol. Chem. 278:36059-36067.

   88.    Mills, L. K., Y. Shi, and R. L. Millette. 1994. YY1 is the cellular factor shown previously to bind to regulatory regions of several leaky-late (beta gamma, gamma 1) genes of herpes simplex virus type 1. J Virol. 68:1234-1238.

   89.    Milton, N. G. 2001. Phosphorylation of amyloid-beta at the serine 26 residue by human cdc2 kinase. Neuroreport 12:3839-3844.

   90.    Miriagou, V., L. Stevanato, R. Manservigi, and P. Mavromara. 2000. The C-terminal cytoplasmic tail of herpes simplex virus type 1 gE protein is phosphorylated in vivo and in vitro by cellular enzymes in the absence of other viral proteins. J Gen. Virol. 81:1027-1031.

   91.    Mogensen, T. H., J. Melchjorsen, L. Malmgaard, A. Casola, and S. R. Paludan. 2004. Suppression of proinflammatory cytokine expression by herpes simplex virus type 1. J Virol. 78:5883-5890.

   92.    Mohr, I. 2004. Neutralizing innate host defenses to control viral translation in HSV-1 infected cells. Int. Rev. Immunol. 23:199-220.

   93.    Mulvey, M., C. Arias, and I. Mohr. 2007. Maintenance of endoplasmic reticulum (ER) homeostasis in herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with PERK, a cellular ER stress sensor. J Virol. 81:3377-3390.

   94.    Murata, T., F. Goshima, Y. Nishizawa, T. Daikoku, H. Takakuwa, K. Ohtsuka, T. Yoshikawa, and Y. Nishiyama. 2002. Phosphorylation of cytokeratin 17 by herpes simplex virus type 2 US3 protein kinase. Microbiol. Immunol. 46:707-719.

   95.    Nozawa, N., Y. Kawaguchi, M. Tanaka, A. Kato, A. Kato, H. Kimura, and Y. Nishiyama. 2005. Herpes simplex virus type 1 UL51 protein is involved in maturation and egress of virus particles. J Virol. 79:6947-6956.

   96.    Nuber, U. and M. Scheffner. 1999. Identification of determinants in E2 ubiquitin-conjugating enzymes required for hect E3 ubiquitin-protein ligase interaction. J Biol. Chem. 274:7576-7582.

   97.    Nuber, U., S. Schwarz, P. Kaiser, R. Schneider, and M. Scheffner. 1996. Cloning of human ubiquitin-conjugating enzymes UbcH6 and UbcH7 (E2-F1) and characterization of their interaction with E6-AP and RSP5. J Biol. Chem. 271:2795-2800.

   98.    Parry, C., S. Bell, T. Minson, and H. Browne. 2005. Herpes simplex virus type 1 glycoprotein H binds to alphavbeta3 integrins. J Gen. Virol. 86:7-10.

   99.    Pasieka, T. J., T. Baas, V. S. Carter, S. C. Proll, M. G. Katze, and D. A. Leib. 2006. Functional genomic analysis of herpes simplex virus type 1 counteraction of the host innate response. J Virol. 80:7600-7612.

100.    Perret, V., S. J. An, and J. M. Wu. 1990. Altered cell growth and induction of an interferon-responsive gene in fibroblast lines derived from patients with familial Alzheimer's disease. Biochem. Int. 22:311-319.

101.    Petroski, M. D., G. B. Devi-Rao, M. K. Rice, and E. K. Wagner. 2001. The downstream activation sequence of the strict late Herpes Simplex Virus Type 1 U(L)38 promoter interacts with hTAF(II)70, a component of TFIID. Virus Genes 22:299-310.

102.    Petroski, M. D. and E. K. Wagner. 1998. Purification and characterization of a cellular protein that binds to the downstream activation sequence of the strict late UL38 promoter of herpes simplex virus type 1. J Virol. 72:8181-8190.

103.    Poon, A. P., H. Gu, and B. Roizman. 2006. ICP0 and the US3 protein kinase of herpes simplex virus 1 independently block histone deacetylation to enable gene expression. Proc. Natl. Acad. Sci. U. S. A 103:9993-9998.

104.    Raftery, M., R. Campbell, E. N. Glaros, K. A. Rye, G. M. Halliday, W. Jessup, and B. Garner. 2005. Phosphorylation of apolipoprotein-E at an atypical protein kinase CK2 PSD/E site in vitro. Biochemistry 44:7346-7353.

105.    Rajcani, J. and M. Kudelova. 1999. Glycoprotein K of herpes simplex virus: a transmembrane protein encoded by the UL53 gene which regulates membrane fusion. Virus Genes 18:81-90.

106.    Ramos-Kuri, J. M. 1992. [Envelope and membrane glycoproteins of Herpes simplex virus]. Rev. Latinoam. Microbiol. 34:23-31.

107.    Rao, N., S. Miyake, A. L. Reddi, P. Douillard, A. K. Ghosh, I. L. Dodge, P. Zhou, N. D. Fernandes, and H. Band. 2002. Negative regulation of Lck by Cbl ubiquitin ligase. Proc. Natl. Acad. Sci. U. S. A 99:3794-3799.

108.    Reynolds, A. E., L. Liang, and J. D. Baines. 2004. Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes U(L)31 and U(L)34. J Virol. 78:5564-5575.

109.    Reynolds, A. E., B. J. Ryckman, J. D. Baines, Y. Zhou, L. Liang, and R. J. Roller. 2001. U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol. 75:8803-8817.

110.    Rux, A. H., H. Lou, J. D. Lambris, H. M. Friedman, R. J. Eisenberg, and G. H. Cohen. 2002. Kinetic analysis of glycoprotein C of herpes simplex virus types 1 and 2 binding to heparin, heparan sulfate, and complement component C3b. Virology 294 :324-332.

111.    Saffran, H. A., J. M. Pare, J. A. Corcoran, S. K. Weller, and J. R. Smiley. 2007. Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep. 8:188-193.

112.    Sanchez, R. and I. Mohr. 2007. Inhibition of the Cellular 2'-5' Oligoadenylate Synthetase by the Herpes Simplex Virus-1 Us11 protein. J Virol.

113.    Sanfilippo, C. M. and J. A. Blaho. 2006. ICP0 gene expression is a herpes simplex virus type 1 apoptotic trigger. J Virol. 80:6810-6821.

114.    Schlieker, C., G. A. Korbel, L. M. Kattenhorn, and H. L. Ploegh. 2005. A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae. J Virol. 79:15582-15585.

115.    Simpson-Holley, M., J. Baines, R. Roller, and D. M. Knipe. 2004. Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J Virol. 78:5591-5600.

116.    Smith, C. A., P. Bates, R. Rivera-Gonzalez, B. Gu, and N. A. DeLuca. 1993. ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIB. J Virol. 67:4676-4687.

117.    Stern, S. and W. Herr. 1991. The herpes simplex virus trans-activator VP16 recognizes the Oct-1 homeo domain: evidence for a homeo domain recognition subdomain. Genes Dev. 5:2555-2566.

118.    Struyf, F., A. E. Plate, and P. G. Spear. 2005. Deletion of the second immunoglobulin-like domain of nectin-1 alters its intracellular processing and localization and ability to mediate entry of herpes simplex virus. J Virol. 79:3841-3845.

119.    Subramanian, R. P. and R. J. Geraghty. 2007. Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B. Proc. Natl. Acad. Sci. U. S. A.

120.    Sullivan, V. and G. L. Smith. 1988. The herpes simplex virus type 1 US7 gene product is a 66K glycoprotein and is a target for complement-dependent virus neutralization. J Gen. Virol. 69 ( Pt 4):859-867.

121.    Takakuwa, H., F. Goshima, T. Koshizuka, T. Murata, T. Daikoku, and Y. Nishiyama. 2001. Herpes simplex virus encodes a virion-associated protein which promotes long cellular processes in over-expressing cells. Genes Cells 6:955-966.

122.    Talloczy, Z., W. Jiang, H. W. Virgin, D. A. Leib, D. Scheuner, R. J. Kaufman, E. L. Eskelinen, and B. Levine. 2002. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc. Natl. Acad. Sci. U. S. A 99:190-195.

123.    Taylor, T. J. and D. M. Knipe . 2004. Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol. 78:5856-5866.

124.    Terhune, S., E. Torigoi, N. Moorman, M. Silva, Z. Qian, T. Shenk, and D. Yu. 2007. Human Cytomegalovirus UL38 Protein Blocks Apoptosis. J Virol.

125.    van Leeuwen, H., G. Elliott, and P. O'Hare. 2002. Evidence of a role for nonmuscle myosin II in herpes simplex virus type 1 egress. J Virol. 76:3471-3481.

126.    Wadd, S., H. Bryant, O. Filhol, J. E. Scott, T. Y. Hsieh, R. D. Everett, and J. B. Clements. 1999. The multifunctional herpes simplex virus IE63 protein interacts with heterogeneous ribonucleoprotein K and with casein kinase 2. J Biol. Chem. 274:28991-28998.

127.    Walter, J., J. Grunberg, A. Schindzielorz, and C. Haass. 1998. Proteolytic fragments of the Alzheimer's disease associated presenilins-1 and -2 are phosphorylated in vivo by distinct cellular mechanisms. Biochemistry 37:5961-5967.

128.    Watanabe, S., H. Take, K. Takeda, Z. X. Yu, N. Iwata, and S. Kajigaya. 2000. Characterization of the CIN85 adaptor protein and identification of components involved in CIN85 complexes. Biochem. Biophys. Res. Commun. 278:167-174.

129.    Wu, M. X., Z. Ao, K. V. Prasad, R. Wu, and S. F. Schlossman. 1998. IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science 281:998-1001.

130.    Xia, K., D. M. Knipe, and N. A. DeLuca. 1996. Role of protein kinase A and the serine-rich region of herpes simplex virus type 1 ICP4 in viral replication. J Virol. 70:1050-1060.

131.    Yamauchi, Y., T. Daikoku, F. Goshima, and Y. Nishiyama. 2003. Herpes simplex virus UL14 protein blocks apoptosis. Microbiol. Immunol. 47:685-689.

132.    Yamauchi, Y., K. Wada, F. Goshima, T. Daikoku, K. Ohtsuka, and Y. Nishiyama. 2002. Herpes simplex virus type 2 UL14 gene product has heat shock protein (HSP)-like functions. J Cell Sci. 115:2517-2527.

133.    Yang, F., R. DeBeaumont, S. Zhou, and A. M. Naar. 2004. The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. U. S. A 101:2339-2344.

134.    Ye, G. J., K. T. Vaughan, R. B. Vallee, and B. Roizman. 2000. The herpes simplex virus 1 U(L)34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. J Virol. 74:1355-1363.

135.    Yoshida, Y., T. Chiba, F. Tokunaga, H. Kawasaki, K. Iwai, T. Suzuki, Y. Ito, K. Matsuoka, M. Yoshida, K. Tanaka, and T. Tai. 2002. E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438-442.

136.    Yoshida, Y., F. Tokunaga, T. Chiba, K. Iwai, K. Tanaka, and T. Tai. 2003. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol. Chem. 278:43877-43884.

137.    Zhi, Y. and R. M. Sandri-Goldin. 1999. Analysis of the phosphorylation sites of herpes simplex virus type 1 regulatory protein ICP27. J Virol. 73:3246-3257.

138.    Zhou, C. and D. M. Knipe. 2002. Association of herpes simplex virus type 1 ICP8 and ICP27 proteins with cellular RNA polymerase II holoenzyme. J Virol. 76:5893-5904.

Last update July 27, 2015

View Stats